首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we present a new broadband CP square‐slot antenna with an inverted F‐shaped feed‐line. The antenna is composed of an inverted F‐shaped feed‐line, pairs of isosceles triangular chamfers, I‐shaped slots, rectangular slots and triangular patches, and a Z‐shaped strip. By introducing these strips and slots into the square‐slot, multiple CP modes can be stimulated simultaneously, which eventually enhances 3‐dB ARBW and 10‐dB impedance bandwidth (IBW) of the presented antenna. The measured results show that its IBW (|S11| < ?10 dB) is about 7.2 GHz (87.8% from 4.6 to 11.8 GHz) and its ARBW (AR < 3 dB) is 8.3 GHz (96% from 4.5 to 12.8 GHz).  相似文献   

2.
A new broadband circularly polarized (CP) square‐slot antenna with low axial ratios is proposed in this article. The antenna is comprised of an L‐shaped microstrip line with tapered section and a square‐slot ground plane with some stubs and slots, which are utilized as perturbations for the desirable antenna performance. By loading stubs and slots in the square‐slot ground plane, the 2‐dB axial ratio bandwidth (ARBW) and 10‐dB return loss bandwidth for the presented antenna can be markedly improved. The measured results show that its 2‐dB ARBW is 4.2 GHz (54.2% from 5.65 GHz to 9.85 GHz) and its 10‐dB return loss bandwidth is about 8.9 GHz (92.7% from 5.15 GHz to 14.05 GHz). The proposed antenna features compact structure and broad 2‐AR bandwidth which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

3.
In this study, a simple broadband circularly polarized (CP) printed monopole antenna for S/C‐band applications is proposed. The CP antenna is composed of a falcate‐shaped monopole with a right‐angle trapezoid stub, then wide impedance and axial ratio (AR) bandwidths are achieved. By placing one rectangular split‐ring resonator above the stub for generating upper CP mode, both of impedance and CP performances are further improved. The proposed antenna is fabricated on a FR4 substrate and measured. The measured ?10‐dB impedance bandwidth is 107%, ranging from 2.4‐7.9 GHz, and the measured 3‐dB AR bandwidth is 94% (2.4‐6.6 GHz), covering the entire wireless local area network (WLAN) and WiMAX bands.  相似文献   

4.
The design of a microstrip‐fed annular‐ring slot antenna (ARSA) with circular polarization (CP) radiation is initially studied. To obtain CP radiation with broad 3‐dB axial ratio (AR) bandwidth that can cover the WiMAX 2.3 GHz (2305–2320 MHz, 2345–2360 MHz) and WLAN 2.4 GHz (2400–2480 MHz) bands, a novel technique of extending an inverted L‐shaped slot from the bottom section of the annular‐ring is proposed. To suppress the harmonic modes induced by the CP ARSA, the technique of integrating a defected ground structure into the annular‐ring slot is further introduced. From the measured results, 10‐dB impedance bandwidth and 3‐dB AR bandwidth of 44.86 and 9.68% were achieved by the proposed harmonic suppressed CP ARSA. Furthermore, average gain and radiation efficiency of ~4.7 dBic and 71%, respectively, were also exhibited across the bands of interest. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:337–345, 2015.  相似文献   

5.
In this article, a wide‐band circularly polarized slot antenna array with reconfigurable feed‐network for WiMAX, C‐Band, and ITU‐R applications is proposed. Different novel methods are used in proposed array to improve antenna features such as impedance matching, 3 dB axial‐ratio bandwidth (ARBW), gain, and destructive coupling effects. Miniaturized dual‐feed square slot antenna, with one attached L‐shaped strip and a pair of T‐shaped strip at ground surface for improving impedance matching and circular polarization (CP) purity, is presented. For further enhancement of CP attributes, reconfigurable sequentially rotated feed network is utilized to obtain wider 3 dB ARBW. Furthermore reconfigurable property of network gives controlling Right and Left handed CPs, respectively. Finally, a special form of Electromagnetic Band gap structure is employed on top layer of substrate that provides high isolation between radiating elements and array feed network to enhance overall performance of antenna. The measured results depict 3 dB ARBW from 4.6 to 7.2 GHz, impedance bandwidth from 3.3 to 8.8 GHz for VWSR<2, and peak gain of 10 dBi at 6 GHz. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:825–833, 2015.  相似文献   

6.
In this article, a novel inverted L‐shaped microstrip‐fed wideband circularly polarized (CP) modified square‐slot antenna is designed. By cutting a pair of triangle chamfers and introducing a pair of triangle patches at the square‐slot, the antenna achieves a wideband CP radiation. Moreover, CP performance of the antenna can also be remarkably enhanced by protruding an L‐shaped strip and embedding a tuning rectangle slot into the slot ground. The measured results demonstrate that the axial‐ratio bandwidth for AR < 3 is 75.1% (from 4.45 to 9.8 GHz) and the impedance bandwidth (|S11| < ?10 dB) reaches 65.8% (from 4.95 to 9.8 GHz). In addition, surface current studies are performed to illustrate the operating mechanism of CP operation, and the antenna has bidirectional radiation characteristics with an average gain of ~4 dBic within the CP band.  相似文献   

7.
A compact epsilon‐shaped (ε) ultra‐wideband (UWB) antenna for dual‐wideband circularly polarized (CP) applications has been investigated in this article. It consists of a stepped stub loaded modified annular ring‐shaped radiator and modified CPW ground plane. The ground plane is loaded with two semicircular notches and a spiral‐shaped slot. The impedance bandwidth (IBW) is 97.02% (10.4‐30 GHz) along with an overall footprint of 20 × 20 mm2. The fractional axial ratio bandwidth (3‐dB ARBW) for two wide bands is 38.50% (13.30‐19.64 GHz) and 6.45% (26.25‐28.00 GHz), respectively. The proposed antenna is left‐hand circularly polarized with a peak gain of about 5.09 and 5.14 dB in both 3‐dB ARBW bands. The proposed antenna is dominating other reported CP antenna structures in terms of number of CP bands, 3‐dB ARBW, IBW, peak gain, and dimensions.  相似文献   

8.
In this article, a new broadband circularly polarized (CP) microstrip patch antenna (MPA) with a sequential phase (SP) square‐loop feeding structure is proposed. The presented antenna is composed of a square‐loop feeding structure, four L‐shaped parasitic patches with L‐shaped slots, four parasitic square patches, and a corner‐truncated square patch. At first, a SP square‐loop is designed as a feeding structure. Then, four L‐shaped parasitic patches with L‐shaped slots are utilized to generate one CP mode by a capacitive coupled way. At last, four parasitic square patches and a corner‐truncated square patch are together placed above the SP feeding structure to broaden the circularly polarized bandwidth (CPBW). The presented antenna has a wide 3‐dB axial ratio bandwidth (ARBW) of 16.7% (5.4 GHz, 4.95‐5.85 GHz), and a wide 10‐dB return loss bandwidth of 25.5% (5.5 GHz, 4.8‐6.2 GHz). The proposed antenna features compact structure and broad 3‐AR bandwidth which could completely cover the WLAN (5.725‐5.85GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

9.
In this article, we investigate bandwidth‐enhancement of a circularly‐polarized (CP) Fabry‐Perot antenna (FPA) using single‐layer partially reflective surface (PRS). The FPA is composed of a single‐feed truncated‐corner square patch antenna, which is covered by the PRS formed by a square aperture array. We revealed that the finite‐sized PRS produces extra resonances and CP radiations for the antenna system, which broadened the impedance matching and axial ratio (AR) bandwidths significantly. For verification, a broadband CP FPA prototype operating near 5.8 GHz was realized and tested. The fabricated antenna with overall size of 125 mm × 125 mm × 23.5 mm achieves a |S11| < ?10 dB bandwidth of 31.7% (5.23‐7.2 GHz), an AR < 3‐dB bandwidth of 13.7% (5.45‐6.25 GHz), the peak gain of 13.3 dBic, a 3‐dB gain bandwidth of 22.38% (5.0‐6.26 GHz), and a radiation efficiency of >91%.  相似文献   

10.
A wideband circularly polarized printed antenna is proposed and fabricated, which employs monofilar spiral stubs and a slit in the asymmetrical ground plane which are fed by an inverted L‐shaped microstrip feedline. The CP operation is realized by embedding an inverted‐L shaped strip and modified ground plane and can be markedly improved by loading monofilar spiral stubs asymmetrically connected at the edge of the ground plane. After optimization, the measured results of the finally structure demonstrate that a 10‐dB bandwidth of 67.6% from 4.6 to 9.3 GHz and a 3‐dB axial‐ratio bandwidth (ARBW) for circular polarization (CP) of 60.1% from 5 to 9.3 GHz could be achieved which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band. To explain the mechanism of broadband circular polarization operation, the analysis of magnetic fields distributions and a parametric study of the design are given. Compared to other recent works, a simpler structure, wider axial ratio and impedance bandwidths and a more compact size are the key features of the proposed antenna.  相似文献   

11.
In this article, a dual‐band and wideband omnidirectional circularly polarized (CP) antenna based on the vanadium dioxide (VO2) is investigated. The operating bandwidth of such an antenna can be regulated by altering the outside temperature (T), which is attained by the insulator‐metal transition of VO2. The omnidirectional CP antenna is based on a loop antenna‐dipole model, which is composed of four tilted metal and VO2 resonant units that are loaded around a cuboid and a feeding network for broadening bandwidth. The simulated results show that when T = 50°C (State I), the 10‐dB impedance bandwidth is 45.7% (1.67‐2.66 GHz), and the 3‐dB axial ratio (AR) bandwidth is 40% (1.9‐2.85 GHz). When T = 80°C (State II), the 10‐dB impedance bandwidth is 13.8% (1.62‐1.86 GHz), and the 3‐dB AR bandwidth is 21.8% (1.68‐2.09 GHz). In order to further characterize the concept of the proposed antenna, the related parameters of such an antenna are studied using simulation software HFSS.  相似文献   

12.
A circular disk patch antenna loaded with a hemi‐circular slot is initially proposed for achieving circular polarization (CP). To exhibit broad CP bandwidth that can cover the WLAN 2.4 GHz operating band, the patch antenna is fed by an L‐shaped probe. To further attain conical beam radiation with peak gain of ~8 dBic at ±30 degrees theta angle (θ), a 2 × 2 array type is proposed in this study, in which four circular disk patch array elements are arranged in a sequentially rotated fashion via a corporate feed network. Here, desirable 3‐dB axial ratio (AR) bandwidth and 10‐dB impedance bandwidth of ~5% and 21% were measured. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:223–228, 2014.  相似文献   

13.
Circularly polarized (CP), beam steering antennas are preferred to reduce the disruptive effects such as multi‐path fading and co‐channel interference in wireless communications systems. Nowadays, intensive studies have been carried out not only on the specific antenna array design but also their feeding networks to achieve circular polarization and beam steering characteristics. A compact broadband CP antenna array with a low loss feed network design is aimed in this work. To improve impedance and CP bandwidth, a feed network with modified Butler matrix and a compact ultra‐wideband square slot antenna element are designed. With this novel design, more than 3 GHz axial ratio BW is achieved. In this study, a broadband meander line compact double box coupler with impedance bandwidth over 4.8‐7 GHz frequency and the phase error less than 3° is used. Also the measured impedance bandwidth of the proposed beam steering array antenna is 60% (from 4.2 to 7.8 GHz). The minimum 3 dB axial ratio bandwidth between ports, support 4.6–6.8 GHz frequency range. The measured peak gain of the proposed array antenna is 8.9 dBic that could scan solid angle about ~91 degree. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:146–153, 2016.  相似文献   

14.
In this article, a new low‐profile broadband circularly polarized antenna with a single‐layer metasurface is designed. The metasurface is composed of 4 × 4 rotated rectangle‐loops. Compared to single rotated rectangle, introducing inner‐cut rectangle slot can increase the design flexibilities by changing this slot size for wider circularly polarized operating bandwidth and reduce the size of the antenna in same frequency. The proposed antenna has the advantages of a wide 3‐dB axial ratio bandwidth from 5.4 to 6.05 GHz and an excellent 10‐dB impedance bandwidth from 5 to 6.05 GHz.  相似文献   

15.
This article presents a method to design broadband circularly polarized (CP) Fabry‐Perot Resonator (FPR) antenna. The proposed antenna is based on multi‐layer thin dielectric slabs arranged in close proximity as a partially reflecting surface (PRS) and an Archimedean spiral as a CP radiating source. Experimental results show a broadband operation from 6 to 13 GHz, in which the reflection coefficient is less than ?10 dB and the axial ratio (AR) is lower than 3 dB. In addition, good radiation patterns and high broadside gain of better than 10.8 dBic are achieved over the operating bandwidth. The proposed antenna can be used for C‐ and X‐band satellite communications.  相似文献   

16.
A dual mode square‐ring defected ground waveguide (SR‐DGW) with defected square patch is first proposed to excite a single‐feed dual mode circularly polarized (CP) patch antenna, which can improve the impedance bandwidth and achieve the CP radiation pattern. The defected square patch is called the perturbation element. By optimizing the size of the perturbation, the degenerate modes of the dual mode SR‐DGW are split and their orthogonal modes can be excited simultaneously. Due to the dual mode of the SR‐DGW, the TM01 mode, and TM10 mode of the square patch antenna are excited simultaneously, which can improve the impedance bandwidth of the antenna. Meanwhile, owing to the orthogonal modes, CP radiation pattern of the antenna is obtained. Then, for a better impedance matching, an L‐shaped spurline embedded in the feedline is introduced. The simulated and measured results show a good performance of the proposed antenna. The measured ?10 dB impedance bandwidth is 10.4% (3.56 GHz‐3.95 GHz). The measured 3 dB axial ratio bandwidth is 5.36% (3.63 GHz‐3.83 GHz). Detailed designs and experiments are described and discussed.  相似文献   

17.
A wideband circularly polarized printed antenna is proposed and fabricated, which employs monofilar spiral stubs and a slit in the asymmetrical ground plane which is fed by an asymmetrical microstrip feedline using a via. The CP operation is realized by embedding an inverted‐L shaped strip and a modified ground plane and can be markedly improved by loading monofilar spiral stubs connected to the asymmetric feedline by means of a via. A parametric study of the key parameters is made and the mechanism for circular polarization is described. After optimization, the impedance bandwidth is approximately 3.6 GHz (4.4‐8 GHz) and the 3 dB axial ratio bandwidth is approximately 3.3 GHz (4.7‐8 GHz), which represent fractional bandwidths of approximately 58.1% and 52%, respectively. Therefore, the proposed antenna is suitable for circular polarization applications in C (4‐8 GHz) band. Compared with other recent works, the simpler structure, wider axial ratio, impedance bandwidths, and more compact size are the key features of the proposed antenna.  相似文献   

18.
This article presents the design of an offset CPW‐fed slot antenna which exhibits a narrow impedance bandwidth (IBW; |S11| ≤ ?10 dB) extending from 1.20 GHz to 1.45 GHz and another wide impedance bandwidth from 1.86 GHz to 8.4 GHz thus covering almost all the conventional operating frequencies. The antenna is loaded with semicircular and rectangular stubs and meandered microstrip lines to realize circular polarization at 1.35 GHz, 3.3 GHz, 4.9 GHz, and 7.5 GHz with axial ratio bandwidth (axial ratio ≤ 3 dB) of 19.25% (1.2‐1.46 GHz), 4.24% (3.24‐3.38 GHz), 4.1%(4.8‐5 GHz), and 5.2% (7.3‐7.69 GHz) respectively thus covering the GPS, WiMAX, WLAN, and X‐band downlink satellite communication application bands. The mechanism of generation of CP is discussed using vector analysis of surface current density distribution. The gain is fairly constant in the wide IBW region with maximum fluctuation of 1.2 dB. The structure is compact with an overall layout area of 0.27λ × 0.27λ, where λ is the free‐space wavelength corresponding to the lowest circular polarized (CP) frequency. A comparison of the proposed antenna with previously reported structures is performed with respect to impedance bandwidth, compactness, number of CP bands, LHCP to RHCP isolation and gain to comprehend the novelty of the proposed design. A prototype of the proposed antenna is fabricated and the measured results are in accord with the simulated results.  相似文献   

19.
In this article, a novel double‐slot linearly tapered slot antenna with conformal corrugated edges, is proposed. By using double‐slot structure, the E‐plane aperture field of the proposed antenna is more like a plane wave, which helps to improve the directivity of the antenna. Meanwhile, a novel corrugated edge is designed. This conformal corrugated edge can cover all the outer edges of the antenna which has a better improvement of the impedance bandwidth compared with the rectangle corrugated edge. Additionally, according to the theory of microwave network, this article analyzes the reason of bandwidth enhancement realized by double‐slot structure. The proposed antenna provides 145% fractional bandwidth from 3.5 GHz to 22 GHz. The gain of the proposed antenna is more than 12 dB from 6.5 GHz to 21 GHz, and more than 8 dB at the whole operating band.  相似文献   

20.
A planar dual circularly polarized slot antenna is presented. The designed antenna has two tilted “8” shaped slots fed by microstrip lines, one each for transmission (TX) and reception (RX) operations. The isolation between the two ports (TX and RX) is augmented by means of an interdigital capacitor based bandstop filter. The proposed antenna has an impedance bandwidth of 361 MHz centered at 2.293 GHz (2.113‐2.474 GHz) with the isolation between the ports being >17.6 dB which goes up to a value as high as 46 dB within the band of operation. The 3 dB axial ratio (AR) bandwidth is 11.52% centered at 2.1275 GHz (2.005‐2.25 GHz). Because of its high inter‐port isolation within the AR bandwidth, the design is suitable as a full‐duplex antenna for applications in S‐band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号