首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the investigation and development of a novel magnetic drug delivery nanosystem (labeled as MO-20) for cancer therapy. The drug employed was oncocalyxone A (onco A), which was isolated from Auxemma oncocalyx, an endemic Brazilian plant. It has a series of pharmacological properties: antioxidant, cytotoxic, analgesic, anti-inflammatory, antitumor and antiplatelet. Onco A was associated with magnetite nanoparticles in order to obtain magnetic properties. The components of MO-20 were characterized by XRD, FTIR, TGA, TEM and Magnetization curves. The MO-20 presented a size of about 30 nm and globular morphology. In addition, drug releasing experiments were performed, where it was observed the presence of the anomalous transport. The results found in this work showed the potential of onco A for future applications of the MO-20 as a new magnetic drug release nanosystem for cancer treatment.  相似文献   

2.
3.
The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.  相似文献   

4.
5.
With an increasing demand for macromolecular biotherapeutics, the issue of their poor cell-penetrating abilities requires viable and relevant solutions. Herein, we report tripeptides bearing an amino acid with a perfluoroalkyl (RF) group adjacent to the α-carbon. RF-containing tripeptides were synthesized and evaluated for their ability to transport a conjugated hydrophilic dye (Alexa Fluor 647) into the cells. RF-containing tripeptides with the fluorophore showed high cellular uptake efficiency and none of them were cytotoxic. Interestingly, we demonstrated that the absolute configuration of perfluoroalkylated amino acids (RF-AAs) affects not only nanoparticle formation but also the cell permeability of the tripeptides. These novel RF-containing tripeptides are potentially useful as short and noncationic cell-penetrating peptides (CPPs).  相似文献   

6.
7.
8.
Liposome modification by targeting ligands has been used to mediate specific interactions and drug delivery to target cells. In this study, a new peptide ligand, CP7, was found to be able to effectively bind to FGFR1 through reverse molecular docking and could cooperate with VEGFR3 to achieve targeting of A549 cells. CP7 was modified on the surface of the liposome to construct a targeted and safe nanovehicle for the delivery of a therapeutic gene, Mcl-1 siRNA. Due to the specific binding between CP7 and A549 cells, siRNA-loaded liposome-PEG-CP7 showed increased cellular uptake in vitro, resulting in significant apoptosis of tumor cells through silencing of the Mcl-1 gene, which is associated with apoptosis and angiogenesis. This gene delivery system also showed significantly better antitumor activity in tumor-bearing mice in vivo. All of these suggested that siRNA-loaded liposome-PEG-CP7 could be a promising gene drug delivery system with good bioavailability and minimal side effects for treatment.  相似文献   

9.
Fluorescent silica nanoparticles (SiNPs) appear to be a promising imaging platform, showing a specific subcellular localization. In the present study, we first investigated their preferential mitochondrial targeting in myeloid cells, by flow cytometry, confocal microscopy and TEM on both cells and isolated mitochondria, to acquire knowledge in imaging combined with therapeutic applications. Then, we conjugated SiNPs to one of the most used anticancer drugs, doxorubicin (DOX). As an anticancer agent, DOX has high efficacy but also an elevated systemic toxicity, causing multiple side effects. Nanostructures are usually employed to increase the drug circulation time and accumulation in target tissues, reducing undesired cytotoxicity. We tested these functionalized SiNPs (DOX-NPs) on breast cancer cell line MCF-7. We evaluated DOX-NP cytotoxicity, the effect on the cell cycle and on the expression of CD44 antigen, a molecule involved in adhesion and in tumor invasion, comparing DOX-NP to free DOX and stand-alone SiNPs. We found a specific ability to release a minor amount of CD44+ extracellular vesicles (EVs), from both CD81 negative and CD81 positive pools. Modulating the levels of CD44 at the cell surface in cancer cells is thus of great importance for disrupting the signaling pathways that favor tumor progression.  相似文献   

10.
11.
Improving the tumor targeting of anticancer drugs to minimize systemic exposure remains challenging. The chemical conjugation of anticancer drugs with various near-infrared (NIR) fluorophores may provide an effective approach to improve NIR laser-induced cancer phototherapy. Towards this end, the selection of NIR fluorophores conjugated with hydrophobic anticancer drugs is an important consideration for targeted cancer photothermal therapy (PTT). In this study, a highly water-soluble zwitterionic NIR fluorophore (ZW800) was prepared to conjugate with a water-insoluble anticancer drug, chlorambucil (CLB), to improve tumor targeting, in vivo biodistribution, and PTT performance. The in vivo results using an HT-29 xenograft mouse model demonstrated that the CLB-ZW800 conjugate not only exhibited high tumor accumulation within 4 h after injection, but also showed rapid body clearance behavior for less systemic toxicity. Furthermore, the tumor tissue targeted by the CLB-ZW800 conjugate was exposed to 808 nm NIR laser irradiation to generate photothermal energy and promote apoptotic cell death for the effective PTT of cancer. Therefore, this study provides a feasible strategy for developing bifunctional PTT agents capable of tumor-targeted imaging and phototherapy by the conjugation of small molecule drugs with the versatile zwitterionic NIR fluorophore.  相似文献   

12.
Recently, nano-based cancer therapeutics have been researched and developed, with some nanomaterials showing anticancer properties. When it comes to cancer treatment, graphene quantum dots (GQDs) contain the ability to generate 1O2, a reactive oxidative species (ROS), allowing for the synergistic imaging and photodynamic therapy (PDT) of cancer. However, due to their small particle size, GQDs struggle to remain in the target area for long periods of time in addition to being poor drug carriers. To address this limitation of GQDs, hollow mesoporous silica nanoparticles (hMSNs) have been extensively researched for drug delivery applications. This project investigates the utilization and combination of biomass-derived GQDs and Stöber silica hMSNs to make graphene quantum dots-hollow mesoporous silica nanoparticles (GQDs-hMSNs) for fluorescent imaging and dual treatment of cancer via drug delivery and photodynamic therapy (PDT). Although the addition of hMSNs made the newly synthesized nanoparticles slightly more toxic at higher concentrations, the GQDs-hMSNs displayed excellent drug delivery using fluorescein (FITC) as a mock drug, and PDT treatment by using the GQDs as a photosensitizer (PS). Additionally, the GQDs retained their fluorescence through the surface binding to hMSNs, allowing them to still be used for cell-labeling applications.  相似文献   

13.
赵海田  李旭东  曹凤芹  倪艳  姚磊 《化工进展》2019,38(11):5057-5065
壳聚糖纳米粒子载药体系因其天然无毒、生物相容性高、可生物降解等特点,在生物医学、化工和食品等领域有广阔的应用前景。本文对制备壳聚糖纳米粒子的离子交联法、聚电解质复合法、乳化交联法、喷雾干燥法和溶剂蒸发法等主要方法进行了综述,并阐述了其制备原理和优缺点。此外,本文结合国内外学者近期的研究工作,综述了壳聚糖纳米粒子载药体系在抗肿瘤药物和抑菌药物方面的应用研究进展,并对壳聚糖装载降糖药物、降脂药物、治疗骨质疏松药物和抗癫痫药物应用进行了简介。最后结合壳聚糖纳米载药体系在制备方法及应用中存在的实际问题,提出多学科研究相结合,开发壳聚糖纳米载药体系的智能控释、靶向递送功能和突破人体特殊生物屏障功能将是其近期的重点研究方向。  相似文献   

14.
Doxorubicin (DOX) was immobilized on gold nanoparticles (AuNPs) capped with carboxymethyl chitosan (CMC) for effective delivery to cancer cells. The carboxylic group of carboxymethyl chitosan interacts with the amino group of the doxorubicin (DOX) forming stable, non-covalent interactions on the surface of AuNPs. The carboxylic group ionizes at acidic pH, thereby releasing the drug effectively at acidic pH suitable to target cancer cells. The DOX loaded gold nanoparticles were effectively absorbed by cervical cancer cells compared to free DOX and their uptake was further increased at acidic conditions induced by nigericin, an ionophore that causes intracellular acidification. These results suggest that DOX loaded AuNPs with pH-triggered drug releasing properties is a novel nanotheraputic approach to overcome drug resistance in cancer.  相似文献   

15.
RNA interference (RNAi) has emerged as a powerful tool for studying target identification and holds promise for the development of therapeutic gene silencing. Recent advances in RNAi delivery and target selection provide remarkable opportunities for translational medical research. The induction of RNAi relies on small silencing RNAs, which affect specific messenger RNA (mRNA) degradation. Two types of small RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), have a central function in RNAi technology. The success of RNAi-based therapeutic delivery may be dependent upon uncovering a delivery route, sophisticated delivery carriers, and nucleic acid modifications. Lung cancer is still the leading cause of cancer death worldwide, for which novel therapeutic strategies are critically needed. Recently, we have reported a novel platform (PnkRNA™ and nkRNA®) to promote naked RNAi approaches through inhalation without delivery vehicles in lung cancer xenograft models. We suggest that a new class of RNAi therapeutic agent and local drug delivery system could also offer a promising RNAi-based strategy for clinical applications in cancer therapy. In this article, we show recent strategies for an RNAi delivery system and suggest the possible clinical usefulness of RNAi-based therapeutics for lung cancer treatment.  相似文献   

16.
Advances in nanomedicine have seen the adaptation of nanoparticles (NPs) for subcellular delivery for enhanced therapeutic impact and reduced side effects. The pivotal role of the mitochondria in apoptosis and their potential as a target in cancers enables selective induction of cancer cell death. In this study, we examined the mitochondrial targeted delivery of betulinic acid (BA) by the mitochondriotropic TPP+-functionalized epigallocatechin gallate (EGCG)-capped gold NPs (AuNPs), comparing the impact of polyethylene glycol (PEG) and poly-L-lysine-graft-polyethylene glycol (PLL-g-PEG) copolymer on delivery efficacy. This included the assessment of their cellular uptake, mitochondrial localization and efficacy as therapeutic delivery platforms for BA in the human Caco-2, HeLa and MCF-7 cancer cell lines. These mitochondrial-targeted nanocomplexes demonstrated significant inhibition of cancer cell growth, with targeted nanocomplexes recording IC50 values in the range of 3.12–13.2 µM compared to that of the free BA (9.74–36.31 µM) in vitro, demonstrating the merit of mitochondrial targeting. Their mechanisms of action implicated high amplitude mitochondrial depolarization, caspases 3/7 activation, with an associated arrest at the G0/G1 phase of the cell cycle. This nano-delivery system is a potentially viable platform for mitochondrial-targeted delivery of BA and highlights mitochondrial targeting as an option in cancer therapy.  相似文献   

17.
To increase the efficacy of doxorubicin in induction of apoptosis, pH-responsive nanocarriers with an average particle size of 20 nm by using chitosan-polymethacrylic acid (CTS-PMAA) shells and Fe3O4 cores via in situ polymerization approach were synthesized. Doxorubicin hydrochloride (DOX) was loaded effectively to nanocarrier through electrostatic interactions and strong hydrogen banding. The cumulative release of DOX-loaded nanoparticles was pH dependent with a maximum release rate at pH 5.8. In vitro cytotoxicity assay revealed the biocompatibility of blank nanocarrier and superior anticancer performance of DOX-loaded nanoparticles verified by DAPI staining and MTT assay tests.  相似文献   

18.
Cell-penetrating peptides (CPP) have been shown to be efficient in the transport of cargoes into the cells, namely siRNA and DNA, proteins and peptides, and in some cases, small therapeutics. These peptides have emerged as a solution to increase drug concentrations in different tissues and various cell types, therefore having a relevant therapeutic relevance which led to clinical trials. One of them, MAP, is a model amphipathic peptide with an α-helical conformation and both hydrophilic and hydrophobic residues in opposite sides of the helix. It is composed of a mixture of alanines, leucines, and lysines (KLALKLALKALKAALKLA). The CPP MAP has the ability to translocate oligonucleotides, peptides and small proteins. However, taking advantage of its unique properties, in recent years innovative concepts were developed, such as in silico studies of modelling with receptors, coupling and repurposing drugs in the central nervous system and oncology, or involving the construction of dual-drug delivery systems using nanoparticles. In addition to designs of MAP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy, this review will be focused on unique molecular structure and how it determines its cellular activity, and also intends to address the most recent and frankly motivating issues for the future.  相似文献   

19.
Cancer-related opportunistic bacterial infections are one major barrier for successful clinical therapies, often correlated to the production of genotoxic factors and higher cancer incidence. Although dual anticancer and antimicrobial therapies are a growing therapeutic fashion, they still fall short when it comes to specific delivery and local action in in vivo systems. Nanoparticles are seen as potential therapeutic vectors, be it by means of their intrinsic antibacterial properties and effective delivery capacity, or by means of their repeatedly reported modulation and maneuverability. Herein we report on the production of a biocompatible, antimicrobial magneto-fluorescent nanosystem (NANO3) for the delivery of a dual doxorubicin–ofloxacin formulation against cancer-related bacterial infections. The drug delivery capacity, rendered by its mesoporous silica matrix, is confirmed by the high loading capacity and stimuli-driven release of both drugs, with preference for tumor-like acidic media. The pH-dependent emission of its surface fluorescent SiQDs, provides an insight into NANO3 surface behavior and pore availability, with the SiQDs working as pore gates. Hyperthermia induces heat generation to febrile temperatures, doubling drug release. NANO3-loaded systems demonstrate significant antimicrobial activity, specifically after the application of hyperthermia conditions. NANO3 structure and antimicrobial properties confirm their potential use in a future dual anticancer and antimicrobial therapeutical vector, due to their drug loading capacity and their surface availability for further modification with bioactive, targeting species.  相似文献   

20.
Being one of the leading causes of death and disability worldwide, cancer represents an ongoing interdisciplinary challenge for the scientific community. As currently used treatments may face limitations in terms of both efficiency and adverse effects, continuous research has been directed towards overcoming existing challenges and finding safer specific alternatives. In particular, increasing interest has been gathered around integrating nanotechnology in cancer management and subsequentially developing various tumor-targeting nanoparticles for cancer applications. In this respect, the present paper briefly describes the most used cancer treatments in clinical practice to set a reference framework for recent research findings, further focusing on the novel developments in the field. More specifically, this review elaborates on the top recent studies concerning various nanomaterials (i.e., carbon-based, metal-based, liposomes, cubosomes, lipid-based, polymer-based, micelles, virus-based, exosomes, and cell membrane-coated nanomaterials) that show promising potential in different cancer applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号