首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Altered expressions of mitochondria elongation factor Tu (EF-Tu) have been observed in certain types of cancers, including gastric cancer cell lines, but the impact of the alterations in gastric adenocarcinoma remains unclear. The purpose of this study was to investigate the expression of EF-Tu in gastric adenocarcinoma and to assess its clinical significance. A total of 104 paired resected gastric adenocarcinoma and corresponding normal specimens were collected in this study. EF-Tu expression was assessed by immunohistochemical staining. The correlation of EF-Tu expression and patients' clinicopathological parameters was statically evaluated and the prognostic significance of EF-Tu expression was assessed by univariate and multivariate analyses. Forty-nine out of 104 (47.1%) gastric adenocarcinoma specimens showed high expression of EF-Tu, while the remaining 55 specimens showed weak or negative expression of EF-Tu. In contrast, EF-Tu high expression was detected in 62.5% (65 of 104) normal tissues. Down-regulation of EF-Tu was associated with serosal invasion (P = 0.042) and node involvement (P = 0.005), and down-regulation of EF-Tu was correlated with poor overall survival (P = 0.020). In curative resection (R0) patients, there were also significant differences (P = 0.043). In the multivariate analysis, the EF-Tu expression remained a significant independent prognostic factor (P = 0.038). Our results indicate that EF-Tu is expressed in both gastric adenocarcinoma and corresponding normal tissues. Down-regulation of EF-Tu expression is associated with advanced disease stage and EF-Tu expression maybe served as an independent prognostic factor.  相似文献   

2.
Bacteria, mitochondria, and chloroplasts contain the highly conserved elongation factor EF4; they have in common that the intracellular ionic strength can change dramatically, in contrast to that of archaea and eukaryotic cytoplasm, where EF4 is absent. This factor has the unique function of back-translocating ribosomes, viz., it exerts the opposite function as EF-G. Under unfavorable growth conditions which increase the intracellular ionic strength, such as high salts, low pH, or low temperature, wild-type cells effectively overgrow strains lacking the EF4 gene lepA. Under these conditions most of EF4 is present in the cytoplasm, and only small amounts in the membrane fraction; the opposite is true under optimal conditions, indicating that the membrane is a storage organ for EF4. This factor tunes bacteria for fitness at high ionic strength by (i) improving the active fraction by reactivating unscheduled stalled ribosomes, and (ii) increasing significantly the rate of protein synthesis.  相似文献   

3.
Neighboring genes in the eukaryotic genome have a tendency to express concurrently, and the proximity of two adjacent genes is often considered a possible explanation for their co-expression behavior. However, the actual contribution of the physical distance between two genes to their co-expression behavior has yet to be defined. To further investigate this issue, we studied the co-expression of neighboring genes in zebrafish, which has a compact genome and has experienced a whole genome duplication event. Our analysis shows that the proportion of highly co-expressed neighboring pairs (Pearson’s correlation coefficient R>0.7) is low (0.24% ~ 0.67%); however, it is still significantly higher than that of random pairs. In particular, the statistical result implies that the co-expression tendency of neighboring pairs is negatively correlated with their physical distance. Our findings therefore suggest that physical distance may play an important role in the co-expression of neighboring genes. Possible mechanisms related to the neighboring genes’ co-expression are also discussed.  相似文献   

4.
5.
6.
Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model.  相似文献   

7.
8.
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and it is involved in several fundamental functions in the central and peripheral nervous systems, and in sensory organs. BDNF regulates the chemosensory systems of mammals and is consistently expressed in those organs. In zebrafish, the key role of BDNF in the biology of the hair cells of the inner ear and lateral line system has recently been demonstrated. However, only some information is available about its occurrence in the olfactory epithelium, taste buds, and cutaneous isolated chemosensory cells. Therefore, this study was undertaken to analyze the involvement of BDNF in the chemosensory organs of zebrafish during the larval and adult stages. To identify cells displaying BDNF, we compared the cellular pattern of BDNF-displaying cells with those immunoreactive for calretinin and S100 protein. Our results demonstrate the localization of BDNF in the sensory part of the olfactory epithelium, mainly in the ciliated olfactory sensory neurons in larvae and adult zebrafish. Intense immunoreaction for BDNF was also observed in the chemosensory cells of oral and cutaneous taste buds. Moreover, a subpopulation of olfactory sensory neurons and chemosensory cells of olfactory rosette and taste bud, respectively, showed marked immunopositivity for calcium-binding protein S100 and calretinin. These results demonstrate the possible role of BDNF in the development and maintenance of olfactory sensory neurons and sensory cells in the olfactory epithelium and taste organs of zebrafish during all stages of development.  相似文献   

9.
10.
11.
12.
Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient depletion, and acidosis. The physiological function of eEF2K and its role in the development and progression of cancer are here reviewed in detail. In addition, a summary of progress for in vitro eEF2K inhibitors from anti-cancer drug discovery research in recent years, along with their structure–activity relationships (SARs) and synthetic routes or natural sources, is also described. Special attention is given to those inhibitors that have been already validated in vivo, with the overall aim to provide reference context for the further development of new first-in-class anti-cancer drugs that target eEF2K.  相似文献   

13.
Platelet‐activating factor (PAF) and its receptor (PAFr) have been implicated in a wide range of diseases and disorders that originate from the activation of inflammatory pathways. Although the exact structure of the binding site on the PAFr remains unknown, the PAFr is a well‐established therapeutic target, and an array of structurally diverse PAFr antagonists have been identified. These include compounds that are structurally similar to the natural PAF ligand, synthetic heterocycles, complex polycyclic natural products, and various metal complexes. This review provides an update on more than 20 years of progress in this area. The development and synthesis of new PAFr antagonists, structure–activity relationship studies, the biological activity of these molecules, and their therapeutic potential are discussed.  相似文献   

14.
15.
Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号