首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piezoelectric powders and ceramics with the composition of Pb0.95Sr0.05(Zr0.52Ti0.48)O3–Pb(Zn1/3Nb2/3)O3–Pb(Mn1/3Sb2/3)O3 (PZT–PZN–PMS) were prepared by molten salt synthesis (MSS) and conventional mixed-oxide (CMO) methods, respectively. The influence of synthesis process on the properties of powders and ceramics were investigated in detail. The results show that the MSS method significantly improved the sinterability of PZT–PZN–PMS ceramics, resulting in an improvement of dielectric and piezoelectric properties compared to the CMO method. The optimum values of MSS samples are as follows: r = 1773; tan δ = 0.0040; Tc = 280 °C; d33 = 455 pC/N; kp = 0.70; Qm = 888; Ec = 10.3 kV/cm; and Pr = 28.2 μC/cm2, at calcination of 800 °C and sintering of 1120 °C temperature.  相似文献   

2.
The ceramics were prepared successfully by the addition of WO3 to the Mn-modified Pb(Zr0.52Ti0.48)O3–Pb(Mn1/3Sb2/3)O3–Pb(Zn1/3Nb2/3)O3 (PZT–PMS–PZN) for high power piezoelectric transformers application. XRD analysis indicated that the ceramics were mainly composed of a tetragonal phase in the range of 0–1.0 wt.% WO3 addition. The grain size of the ceramics significantly decreased from 10.0 to 2.9 μm by addition of WO3. Moreover, the addition of WO3 promoted densification of the ceramics and increased mechanical quality factor (Qm), planar coupling factor (Kp) and piezoelectric constant (d33) kept high values, whereas, dielectric loss (tan δ) was low. Δf (=fa − fr) slightly changed when WO3 addition was above 0.5 wt.%. The ceramics with 0.6 wt.% WO3 addition, sintered at 1150 °C showed the optimized piezoelectric and dielectric properties with Qm of 1852, Kp of 0.58, d33 of 243 pC/N and tan δ of 0.0050. The ceramics are promising candidates for high power piezoelectric transformers application.  相似文献   

3.
The microstructure, electrical properties, dielectric characteristics, and DC-accelerated aging behavior of the ZnO–V2O5–MnO2 system sintered were investigated for MnO2 content of 0.0–2.0 mol% by sintering at 900 °C. For all samples, the microstructure of the ZnO–V2O5–MnO2 system consisted of mainly ZnO grain and secondary phase Zn3(VO4)2. The incorporation of MnO2 to the ZnO–V2O5 system was found to restrict the abnormal grain growth of ZnO. The nonlinear properties and stability against DC-accelerated aging stress improved with the increase of MnO2 content. The ZnO–V2O5–MnO2 system added with MnO2 content of 2.0 mol% exhibited not only a high nonlinearity, in which the nonlinear coefficient is 27.2 and the leakage current density is 0.17 mA/cm2, but also a good stability, in which %ΔE1 mA = −0.6%, %Δ = −26.1%, and %Δtan δ = +22% for DC-accelerated aging stress of 0.85E1 mA/85 °C/24 h.  相似文献   

4.
We present the first principles calculations of the thermodynamical properties of magnesium hydride (MgH2) over a temperature range of 0–1000 K. The phonon dispersions are determined within the density functional framework and are used to calculate the free energy of MgH2 within the quasiharmonic approximation (QHA) at each cell volume and temperature T. Using the free energies the thermal equation of state (EOS) is derived at several temperatures. From the thermal EOS structural parameters such as the equilibrium cell volume (V0) and elastic properties, namely, bulk modulus (K0) and its pressure derivative are computed. The free energies are also used to calculate various thermodynamical properties within QHA. These include internal energy E, entropy S, specific heat capacity at constant pressure CP, thermal pressure Pthermal(VT) and volume thermal expansion ΔV/V (%). The good agreement of calculated values of S and CP with experimental data exhibits that QHA can be used as a tool for calculating the thermodynamical properties of MgH2 over a wide temperature range. Pthermal(V,T) increases strongly with T at all the volumes but it is a slowly varying function of volume for T = 298–500 K. According to Karki [B.B. Karki, Am. Miner. 85 (2000) 1447] such volume based variations can be neglected and so it is possible to estimate the thermal EOS only with the knowledge of the measured Pthermal(VT) versus temperature at ambient pressure and isothermal compression data at ambient temperature. Temperature dependence of ΔV/V(%) shows that V0 increased with increase in temperature. However, the percentage decrease in K0 superseded this percentage increase in V0 even at temperatures moderately higher than 298 K. Therefore, we suggest application of temperature (T > 298 K) as an approach to enhance the hydrogen storage capacity of MgH2 because of its better compressibility at these temperatures.  相似文献   

5.
The E1 and E11 energy bands of metal–organic chemical vapor deposition grown AlxGa1−xAs, with x in the range 0–0.55, have been determined using photoreflectance technique. The aluminum composition for each sample was determined using the energy of the room-temperature photoluminescence compensated peak value and a suitable fundamental band gap formula. The positions of the E1 and E11 peaks were determined from curve-fitting an appropriate theoretical model to our experimental data by a modified downhill simplex method. Using the results, we propose new E1 and E11 cubic expressions as functions of the aluminum composition, x, and compare them with the available reported expressions.  相似文献   

6.
Residual porosity in ferrous powder metallurgical alloys induces the phenomenon of localized yielding, or first yielding, during tensile testing. This gives rise to the existence of a true (E1) and apparent (E2) Young’s modulus. The true Young’s modulus is similar to the dynamic modulus (Ed) determined by the acoustic resonance method, whereas the apparent Young’s modulus is lower than both E1 and Ed. For alloys with hard microstructures the apparent Young’s modulus turned out to be about 6% lower than the true Young’s modulus and a negligible influence of matrix hardness and pore morphology was highlighted. However, for ferritic or ferritic–pearlitic materials this difference was higher, ranging between 14 and 31% and it decreases as pore roundness is increased. For austenitic AISI 316L alloys both E1 and E2 are lower than Ed because of the presence of oxides on the powder surface, which favour early decohesion at the necks during tensile testing.  相似文献   

7.
采用传统固相反应法制备了Ba(Ti0.96Sn0.04)O3无铅压电陶瓷, 对其压电性能、介电性能、铁电性能和微观结构等进行了研究。研究发现, 原料以及制备工艺对Ba(Ti0.96Sn0.04)O3陶瓷的压电性质具有较大的影响。与BaTiO3陶瓷相比, Ba(Ti0.96Sn0.04)O3陶瓷的正交-四方相变温度TO-T得到了一定的提高, 并且TO-T附近的热滞只有1.8℃。陶瓷的微观形貌呈现出较为复杂的畴结构, 主要以90°平行带状畴为主, 偶尔有少量不同构型的180°畴。电滞回线呈现为理想的近似矩形饱和形状的曲线, 剩余极化强度Pr为18.9 μC/cm2, 矫顽场Ec为 2.5 kV/cm。此外, 非180°畴的翻转是引起陶瓷逆压电常数d33*的主要因素, 其值可达550 pm/V。  相似文献   

8.
By the solid reaction method, undoped, potassium doped and niobium doped lead zirconate titanate (PZT) are elaborated. The mechanical losses measured in the range of the Hz as a function of temperature shows two peaks R1 and R2, and a ferroelectric transition peak P1 between ferroelectric and para-electric states on the undoped PZT—Pb(Zr0.54Ti0.46)O3—noted PZT54/46. Potassium doped PZT—Pb1−xKx(Zr0.54Ti0.46)O3—shortly called PKZT 100x/54/46 shows an increase in the height of both the peaks at a doping content, x, less than 0.5 at.% but an opposite effect is observed above this value. Niobium doped PZT—Pb[(Zr0.54Ti0.46)1−yNby]O3—shortly called PNZT 100y/54/46, shows the vanish of the R2 peak and the decrease of the height of the R1 peak when the doping content increases.  相似文献   

9.
The Aurivillius type bismuth layer-structured compound potassium lanthanum bismuth titanate (K0.5La0.5Bi4Ti4O15) is synthesized using conventional solid-state processing. The phase analysis is performed by X-ray diffraction (XRD) and the microstructural morphology is conducted by scanning electron microscopy (SEM). The ferroelectric, dielectric and piezoelectric properties of K0.5La0.5Bi4Ti4O15 (KLBT) ceramics are investigated in detail. The remnant polarization (Pr) and coercive field (Ec) are found to be 8.6 μC cm−2 and 60 kV cm−1, respectively. The Curie temperature Tc and piezoelectric coefficient d33 are 413 °C and 18 pC N−1, respectively.  相似文献   

10.
In this investigation, ferroelectric Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals have been grown by modified flux technique with PbO self flux. Well-defined domain patterns were observed through polarized light on the as-grown crystals. Fingerprint like pattern and tweed pattern have also been observed. In PZN–PT system the fingerprint domain area is found to be elongated along one direction for increasing PT content.  相似文献   

11.
Thin films of CuGaTe2 with thicknesses in the range, 0.1–1.0 μm were deposited on Corning 7059 glass substrates by flash evaporation. The substrate temperatures, Ts, were maintained in the range 373–623 K. The transmittance of the films was recorded in the wavelength range 900–2500 nm. The dependence of the optical band gap, Eg, on substrate temperature showed that the value of Eg varied from 1.21 eV to 1.24 eV. The variation of refractive index and extinction coefficient with photon energy was studied from which the material properties such as the limiting value of dielectric constant, ε, plasma frequency, ωp, and hole effective mass, mh*, were evaluated as ε = 7.59, ωp = 1.47 × 1014 and mh* = 1.25 m0.  相似文献   

12.
In this study, a damage identification approach was developed for carbon fibre/epoxy composite laminates with localized internal delamination. Propagation of the Lamb wave in laminates and its interaction with the delamination were examined. The fundamental symmetric Lamb wave mode, S0, and the lowest order shear wave mode, S0, were chosen to predict damage location. A real-time active diagnosis system was therefore established. This technique uses distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. The two-way switches were employed to minimize the number of transducers. A signal-processing scheme based on the time–frequency spectrographic analysis was utilised to extract useful diagnostic information. Also, an optimal identification method was applied on damage searching procedure to reduce errors and obtain the diagnostic results promptly. Experiments were conducted on [0/−45/45/90]s CF/EP laminates to verify this diagnosis system. The results obtained show that satisfactory detection accuracy could be achieved.  相似文献   

13.
Tb3+ doped Zn2SiO4 films have been deposited on SiO2 buffered Si wafers by sol–gel method. The structures of these films have been investigated with X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The results revealed that these films were composed of nanometer-size grains with a Willemite structure and had smooth surfaces. Photoluminescence measurements of the films showed a strong emission from 5D4 to 7F5 at 544 nm. The blue emission from 5D37Fj was depressed because of cross-relaxation effect. The decay kinetics of the 5D47F5 green emission was studied and a best fitting was obtained by a double exponential function. The lifetime of the excited 5D4 state is estimated to be 5.2 ms.  相似文献   

14.
Phase transitions and dielectric properties of the (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 crystals with x = 0.3–0.5 are studied. The solid solutions in this composition range are shown to be relaxor ferroelectrics. The crystals with low x demonstrate a diffused maximum in the temperature dependences of the dielectric permittivity at Tm. Tm varies with frequency according to the Vogel–Fulcher law. The polarizing microscopy investigations reveal a first-order phase transition from the relaxor phase to the low-temperature ferroelectric phase at TC, which is several degrees below Tm. The permittivity peak in the crystals with x = 0.5 is sharp, and Tm is equal to TC and does not depend on frequency, as is typical of the transition from a ferroelectric to an ordinary paraelectric phase. Nevertheless, the relaxor, but not the paraelectric, phase is observed at T > Tm. This conclusion is confirmed by the observation of the temperature behaviour of complex dielectric permittivity at T > Tm, which is typical of relaxors and related to the existence of polar nanodomains.  相似文献   

15.
Engineered domain configuration was induced into barium titanate (BaTiO3) single crystals, and the d33 piezoelectricity was investigated as a function of domain size. First, for the BaTiO3 single-domain crystals, piezoelectric constant d33 along [1 1 1]c direction was calculated as 224 pC/N. Prior to the domain engineering, the dependence of domain configuration on the temperature and the electric-field was investigated, and above Curie temperature (Tc), when the electric-field over 6 kV/cm was applied along [1 1 1]c direction, the fine engineered domain configuration appeared. On the basis of the above information, the 33 resonators with different domain sizes were successfully prepared. Their piezoelectric measurement revealed that the d33 of the 33 resonators with fine engineered domain configurations was higher than that of BaTiO3 single-domain crystals. Moreover, d33 increased with decreasing domain sizes. The highest d33 of 289 pC/N was obtained in the BaTiO3 crystal with a domain size of 13 μm.  相似文献   

16.
The kinetic parameters such as crystallization activation energy, E, and the frequency factor, ν, of Li2O–Al2O3–SiO2 glass were determined by a new non-isothermal method. The method is described by the equation , where β is the heating rate and Tf is the inflection-point temperature of differential thermal analysis (DTA). The value of Tf is determined as the maximum peak temperature on derivative differential thermal analysis (DDTA) curves. Values of E and ν of Li2O–Al2O3–SiO2 glass were also determined by two existing non-isothermal methods, namely the Kissinger plot and the Ozawa plot, and compared with those determined by isothermal method. Values of E and ν determined by the proposed equation were 332 kJ/mol and 1.4×1013 s−1, respectively. They are excellent agreement with the isothermal analysis results, 336 kJ/mol and 1.8×1013 s−1, respectively. In contrast, both the Kissinger equation and the Ozawa equation give much higher values of E and ν.  相似文献   

17.
The influence of changes in the pattern of ferroic domain structure on the Raman spectra of β-LiNH4SO4 and (NH4)3H(SO4)2 single crystals were studied. It was shown that the Raman spectra of β-LiNH4SO4 passed from the ferroelastic phase differ from those of “as-grown” crystal and those of the crystal, which was in the paraelectric phase. Significant changes could be observed in the Raman bands related to triply degenerated ν3 and ν4 vibrations of the SO4 tetrahedron. Detailed temperature studies of the Raman spectra of β-LiNH4SO4 close to the paraelectric–ferroelectric phase transition, exhibit anomaly of some internal vibrations of SO4 in the temperature range where a regular large-scale structure is observed. Different types of evolution of the ferroelastic domain structure and temperature behaviour of the donor and acceptor vibrations were shown while heating and cooling the (NH4)3H(SO4)2 crystal. Different values of temperature hysteresis were found in temperature studies of the ferroelastic domain structure (ΔTS  3–5 K) and in Raman spectra studies (ΔTS  12 K). No changes were observed in the pattern of ferroelastic domain structure at the temperature TII–III  265 K, at which C2/c → P2/n structural phase transition takes place. On the other hand, at TIII–IV  135 K additional domains with W′-type of domain wall orientation were found.  相似文献   

18.
The impact behavior of glass, aramid and glass–aramid hybrid fabric epoxy matrix composites was evaluated. Delamination was identified as the main macroscopic failure mode of the composites. A simple relationship based on the macromechanical behavior of laminated composites was established, relating coupling—A26, D26—and shear—A16, D16—elements of the extensional and bending stiffness matrices to the total energy absorbed at impact. The results obtained show that the A66/D66 ratio is a relevant parameter of concern, correlated with the behavior of the composites under impact. Additionally, the coupling matrix Bij was shown to restrain the macroscopic delamination of the composites.  相似文献   

19.
The microstructure and piezoelectric properties of the 0.01Pb(Mg1/2W1/2)O3–0.41Pb(Ni1/3Nb2/3)O3–0.35PbTiO3–0.23PbZrO3 + 0.1 and 0.3 wt.% Y2O3 + x ZnO ceramics were investigated. The crystal structure changed from psudocubic to tetragonal when ZnO added. The average grain size increased from 4 μm to 8 μm with the addition of ZnO by oxygen diffusion, even if the growth rate was low. When ZnO added until 0.5 wt.%, the , kp and d33 values of specimens were slightly increased regardless Y2O3 contents. The curie point of PMW–PNN–PT–PZ ceramics were increased from 162 °C to 232 °C, as increasing the ZnO contents. When ZnO added, the kp of specimens slightly was increased regardless Y2O3 contents. The mechanical quality factors were abruptly decreased regardless Y2O3 contents, when ZnO added until 0.75 wt.%. The optimized piezoelectric properties were obtained; d33 = 730 (pC/N), kp = 60, Qm = 50, and  = 4750, when PMW–PNN–PT–PZ + 0.3 wt.% Y2O3 + 0.5 wt.% ZnO sintered at 1200 °C for 1 h.  相似文献   

20.
The indentation behaviour of an elastoplastic coating–substrate system is investigated using a combination of dimensional and finite element analyses. Scaling functions relating the indentation load–depth curves to coating and substrate mechanical properties are given. Based on these scaling functions, the indentation behaviour of various coated systems is examined. The critical indentation depth to coating thickness ratio below which the substrate material has a negligible effect on the indentation response of the coated system is identified for various generic coating–substrate systems. Such ratio is given in terms of the yield strength and Young’s modulus of the coating and substrate, i.e. σycys and Ec/Es. The results of parametric studies revealed that the commonly used rule that the maximum indentation depth should be less than 10% of the coating thickness, is applicable only when σycys<10. However, indentation experiments should be carried out up to a maximum depth of 5% of the film thickness to avoid any influence from the substrate when σycys≥10 and Ec/Es>0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号