首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Male Long-Evans rats received an 8-trial training session in a spatial water maze task, followed by a unilateral posttraining intrahippocampal injection of either estradiol (1.0 microgram/0.5 microliter) or saline. Retention was tested 24 hr later, and latency to escape was used as a measure of memory. Retention test escape latencies of rats given intrahippocampal injections of estradiol were lower than those of saline-treated rats, indicating an enhancement of memory. Intrahippocampal injections of estradiol delayed 2 hr posttraining did not affect retention. In Experiment 2, the memory enhancing effect of intrahippocampal injection of estradiol was blocked by peripheral administration of a subeffective dose (0.1 mg/kg) of the cholinergic antagonist scopolamine. Intrahippocampal injections of estradiol enhance memory in male rats, and estradiol may influence memory through an interaction with muscarinic cholinergic systems.  相似文献   

2.
The present experiments examined the effects of posttraining intrahippocampal injections of the degradative enzyme-resistant methylcarbamyl analog of the bioactive phospholipid platelet-activating factor (mc-PAF) and the platelet-activating factor (PAF) receptor antagonists BN52021 and BN 50730 on memory in male Long-Evans rats trained in a hidden platform version of the Morris water maze. Following an eight-trial training session, rats received a unilateral intrahippocampal injection of mc-PAF (0.5, 1.0, or 2.0 microgram/0.5 microliter), lyso-PAF (1.0 microgram/0.5 microliter), the cell surface PAF receptor antagonist BN 52021 (0.25, 0.5, or 1.0 micrigram/0.5 microliter/, the intracellular PAF receptor antagonist BN 50730 (2.0, 5.0, or 10.0 microgram/0.5 microliter), or vehicle (50% DMSO in 0.9% saline; 0.5 microliter). On a retention test conducted 24 h after training, the escape latencies of rats administered mc-PAF (1.0 or 2.0 microgram) were significantly lower than those of the vehicle-injected controls, demonstrating a memory-enhancing effect of mc-PAF. Injections of lyso-PAF, a structurally similar metabolite of PAF, had no influence on memory, indicating that the memory-enhancing effect of mc-PAF is not caused by membrane perturbation by the phospholipid. The retention test escape latencies of rats administered BN 52021 (0.5 microgram) and BN 50730 (5.0 or 10 microgram) were significantly higher than those of the controls, indicating a memory impairing effect of both PAF antagonists. When mc-PAF, BN 52021, or BN 50730 was administered 2 h posttraining, no effect on retention was observed, indicating a time-dependent effect of the neuroactive substances on memory storage. The findings suggest a role for endogenous PAF in hippocampal-dependent memory processes.  相似文献   

3.
The present paper provides a review of recent research carried out in this laboratory investigating the effects of posttraining peripheral and intrahippocampal injection of estradiol on memory in rats, and estradiol-acetylcholine interactions in memory modulation. Ovariectomized rats received an eight-trial training session in a hippocampal-dependent hidden platform water maze task. Immediately following training, rats received a posttraining peripheral or intrahippocampal injection of estradiol-cyclodextrin complex or vehicle. Twenty-four hours later rats were returned to the maze for a retention test session, and latency to escape was used as a measure of memory for the previous day's training. Peripheral posttraining injection of estradiol enhances memory relative to vehicle-treated rats. Injections of estradiol given 2 h posttraining has no effect on retention, indicating a time-dependent effect of estradiol on memory storage processes. A time-dependent memory enhancing effect of posttraining intrahippocampal injections of estradiol has also been observed in both male and ovariectomized female rats. The memory enhancing effect of peripheral posttraining injection of estradiol in ovariectomized rats is blocked by a subeffective dose of the acetylcholine muscarinic receptor antagonist scopolamine, suggesting that estradiol interacts with cholinergic systems in memory modulation. Concurrent peripheral posttraining injection of a subeffective dose of estradiol and a subeffective dose of the cholinergic agonist oxotremorine produces a synergistic memory enhancing effect. The findings suggest that: (1) estradiol selectively influences memory storage independent of an effect on nonmnemonic processes, (2) the hippocampus is a potential neuroanatomical site of action mediating estrogenic effects on memory, and (3) estradiol interacts with cholinergic systems in memory modulation.  相似文献   

4.
Isoforms of apolipoprotein E (ApoE) have been implicated as risk factors in Alzheimer's disease. We have, therefore, examined the possible role of ApoE in memory formation, using a one-trial passive avoidance task in day-old chicks. Birds were trained on the task and then at various times pre or post-training were injected intracerebrally with anti-ApoE. Immunofluorescence staining demonstrated the presence of the antibody bound to the neuropil, close to the injection site and adjacent to the ventricle, with a residence time in the brain of up to 30 min. Chicks that were injected 30 min pre-training or just post-training with 5 micrograms/hemisphere of the antibody learned the task, but were amnesic when tested at 30 min or at subsequent times up to 24 hr post-training. When tested at 24 hr, birds injected 5.5 hr post-training showed unimpaired retention. Birds injected with 5 micrograms/hemisphere of anti-ApoA-I (which has a brain distribution similar to that of anti-ApoE) at 30 min pretraining showed no amnesia, indicating the specificity of the effect to the ApoE. Possible mechanisms for this effect are discussed.  相似文献   

5.
Cortistatin-14, a neuropeptide, is present primarily in the cortex and hippocampus. In the hippocampus, cortistatin-14 inhibits pyramidal cell firing and co-exists with GABA. To determine if cortistatin-14 would impair retention, saline or cortistatin-14 were injected intracerebroventricularly after footshock avoidance training in CD-1 mice. After 1 week, training was resumed to determine the effect of cortistatin-14 on retention. Cortistatin-14 was found to impair retention relative to the control group at doses of 0.5-5.0 micrograms.  相似文献   

6.
These experiments examined the effect of posttraining administration of naloxone and β-endorphin in rats with lesions of the stria terminalis (ST). Rats with sham or bilateral ST lesions were trained either in an inhibitory avoidance task or in a Y-maze discrimination task and, immediately after training, received an ip injection of saline, naloxone (0.5, 2.0, or 5.0 mg/kg in the avoidance task; 3.0 mg/kg in the Y-maze task), or β-endorphin (10.0 μg/kg). Retention of each task was tested 24 hrs following training. In the Y-maze task, retention was assessed by training on a reversed discrimination. The ST lesions did not affect retention of either task in otherwise untreated animals. However, in both tasks, ST lesions attenuated the memory-enhancing effects of naloxone as well as the memory-impairing effects of β-endorphin. These findings are consistent with other recent evidence suggesting that the amygdala may be involved in posttraining memory modulation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Rats received, through bilaterally implanted indwelling cannulae, 0.5 microliter infusions of 6-cyano-7-nitroquinoxaline2,3-dione (CNQX) (0.5 microgram), D-2-amino-5-phophono pentanoic acid (AP5) (5.0 micrograms), muscimol (0.5 microgram), scopolamine (2.0 micrograms), SCH23390 (2.5 micrograms), saline or a vehicle into the CA1 region of the hippocampus, or into the antero-lateral prefrontal (PRE), posterior parietal (PP) and entorhinal cortex (EC). The infusions were given 6 min prior to one-trial step-down inhibitory avoidance training in order to measure their effect on working memory (WM), or immediately post-training in order to measure their effect on short-term (STM) and long-term memory (LTM), 1.5 and 24 h later, respectively. WM was inhibited by CNQX or muscimol given into any of the cortical areas, by SCH23390 given into CA1, PRE or PP, and by scopolamine given into PRE or EC. STM was unaffected by any of the treatments given into PRE, and was inhibited by CNQX or muscimol given into CA1, PP and EC and by scopolamine given into PP, and enhanced by SCH given into CA1. LTM was inhibited by CNQX, muscimol, scopolamine or SCH23390 given into PRE, by scopolamine given into PP, by SCH23390 given into the entorhinal cortex, and by AP5, CNQX, muscimol or scopolamine given into CA1. The results indicate a differential involvement of the various neurotransmitter systems in the three types of memory in the various brain areas, and a separation of the mechanisms and of the regions involved in each. In addition, some of the findings suggested links between WM and LTM processing in PRE, between WM and STM processing in EC and PP, and between all three types of memory in CA1.  相似文献   

8.
Involvement of amygdaloid N-methyl-D-aspartate (NMDA) receptors in memory processes was investigated. Rats with cannulas implanted in the basolateral amygdala were trained on a 1 trial step-through inhibitory avoidance task and tested for 24-hr retention. Pretraining infusion of 2-amino-5-phosphonovaleric acid (APV) into the amygdala, but not striatum or hippocampus, produced a dose-dependent retention deficit, which was attenuated by immediate posttraining intra-amygdala infusion of NMDA. Posttraining APV infusion also caused a dose- and time-dependent retention deficit. Pretest APV infusion had no effect on performance in the retention test. Further, pre- or posttraining infusion of 5.0 micrograms APV failed to affect acquisition and retention in the Morris water maze task. These findings suggest that amygdala NMDA receptors are normally activated by aversive training and play a critical role in memory formation for affective experience.  相似文献   

9.
The purpose of this research was to evaluate the role of hippocampal N-methyl-D-aspartate (NMDA) receptors in acquisition and consolidation of memory during shuttle avoidance conditioning in rats. Adult male Wistar rats were surgically implanted with cannulae aimed at the CA1 area of the dorsal hippocampus. After recovery from surgery, animals were trained and tested in a shuttle avoidance apparatus (30 trials, 0.5-mA footshock, 24-h training-test interval). Immediately before or immediately after training, animals received a bilateral intrahippocampal 0.5-microliter infusion containing 5.0 microgram of the NMDA competitive receptor antagonist aminophosphonopentanoic acid (AP5) or vehicle (phosphate-buffered saline, pH 7.4). Infusion duration was 2 min per side. Pre-training infusion of AP5 impaired retention test performance (mean +/- SEM number of conditioned responses (CRs) during retention test session was 16.47 +/- 1.78 in the vehicle group and 9.93 +/- 1.59 in the AP5 group; P < 0.05). Post-training infusion of AP5 did not affect retention (mean +/- SEM number of conditioned responses during retention test session was 18.46 +/- 1.94 in the vehicle group and 20.42 +/- 2.38 in the AP5 group; P > 0.10). This impairment could not be attributed to an effect on acquisition, motor activity or footshock sensitivity since AP5 affected neither training session performance measured by the number of CRs nor the number of intertrial crossings during the training session. These data suggest that NMDA receptors in the hippocampus are critical for retention of shuttle avoidance conditioning, in agreement with previous evidence showing a role of NMDA receptors in fear memory.  相似文献   

10.
Rats implanted bilaterally with cannulae in the CA1 region of the dorsal hippocampus or in the amygdala were trained in one-trial step-down inhibitory (passive) avoidance using a 0.4 mA footshock. At various times after training (0, 1.5, 3, 6 or 9 h for animals implanted in the hippocampus; 0 or 3 h for those implanted in the amygdala), they received infusions of 8-Br-cAMP (cyclic adenosine monophosphate) (1.25 micrograms/side), SKF38393 (7.5 micrograms/side), SCH23390 (0.5 microgram/side), norepinephrine ClH (0.3 microgram/side), timolol ClH (0.3 microgram/side), 8-HO-DPAT (2.5 micrograms/side), NAN-190 (2.5 micrograms/side), forskolin (0.5 microgram/side) or KT5720 (0.5 microgram/side). Rats were tested for retention 24 h after training. SKF38393 is an agonist and SCH23390 an antagonist at dopamine D1 receptors, timolol is a beta-adrenoceptor antagonist, 8-HO-DPAT is an agonist and NAN-190 an antagonist at 5HT1A receptors, forskolin enhances adenylyl cyclase, and KT5720 inhibits protein kinase A. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory and KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF 38393, noradrenaline and NAN-190 caused memory facilitation, and KT5720, SCH23390, timolol and 8-HO-DPAT caused retrograde amnesia. At 9 h from training, all treatments were again ineffective. When given into the amygdala 0 or 3 h post-training all treatments were ineffective, except for noradrenaline at 0 h, which caused retrograde facilitation. The data agree with the suggestion that in the hippocampus, but not the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h from training, and that this is regulated by D1, beta, and 5HT1A receptors. This correlates with a previous report of increased cAMP levels, protein kinase A activity and P-CREB levels at 3-6 h from training in rat hippocampus in this task. This may be taken to suggest that the hippocampus, but not the amygdala, is involved in the long-term storage of step-down inhibitory avoidance in the rat.  相似文献   

11.
Effects of posttraining epinephrine on retention of a massed (1 session, 30 trials) 2-way active avoidance task were studied in rats. Immediately after the training session rats received an injection of 0.05 or 0.01 mg/kg intraperitoneal/ly (ip) epinephrine, or distilled water. Retention was tested 11, 20 or 45 days after training, in independent groups of rats. The 20- and 45-day retention was improved in poor-learning rats and disrupted in good-learning rats. It was concluded that the effect (facilitatory or disruptive) of posttraining epinephrine on memory consolidation depends on the basic learning capacity of rats for this task and needs a long time to be expressed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
The authors tested whether the level of hydration after furosemide diuresis and 22 hrs of sodium depletion affects the amount of water or 0.3 M NaCl solution consumed by rats with intact brains or with lesions of the subfornical organ (SFO). Rats received 2 (underhydrated) or 10 (euhydrated) ml/kg water by gavage as the only fluid input 2, 4, and 20 hrs after 10 mg/kg furosemide. These hydration treatments had little or no effect on the amount of saline consumed in 2 hrs by intact rats. SFO lesions reduced water intake regardless of hydration condition. Euhydrated, SFO-lesioned rats drank a normal amount of saline, but underhydrated, lesioned rats drank less saline than any other group. Thus, euhydration may facilitate salt appetite in SFO-lesioned rats, and the deficits in salt appetite noted in SFO-lesioned rats may result from deficits in water ingestion rather than from a destruction of angiotensin II receptor sites that directly provoke salt appetite. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Ouabain has recently been identified as an endogenous Na(+)-K+ pump inhibitor. We administered ouabain chronically to normotensive rats with varying degrees of reduced renal mass (RRM) and to normal two-kidney rats to see whether hypertension could be produced. Normal male Wistar rats and rats with 25%, 60%, and 70% RRM received ouabain (13.9 micrograms/kg per day IP) in normal saline for 4 weeks followed by ouabain (27.8 micrograms/kg per day IP) for 3 to 4 more weeks. Respective control animals received vehicle only. Blood pressure was recorded weekly by tail plethysmography. Animals received tap water and standard rat chow, except for 70% RRM rats, which received distilled water and sodium-free chow. After 6 to 8 weeks of treatment, with rats under thiobutabarbital anesthesia, direct blood pressure was determined. Plasma, tissue, and urinary ouabain levels were measured with a specific radioimmunoassay. Animals receiving ouabain developed significant increases in mean blood pressure compared with control animals (70% RRM, 147 +/- 4 vs 116 +/- 4 mm Hg; 60% RRM, 140 +/- 4 vs 107 +/- 3 mm Hg; 25% RRM, 131 +/- 5 vs 100 +/- 2 mm Hg; no RRM, 116 +/- 4 vs 98 +/- 5 mm Hg). Plasma ouabain levels measured 24 hours after the last ouabain dose were not different in animals receiving ouabain vs those receiving vehicle. However, kidney tissue ouabain levels were significantly greater (6.39 +/- 1.17 vs 2.36 +/- 0.52 micrograms/kg, P < .05) in animals receiving ouabain. In conclusion, ouabain, given chronically, is associated with the development of hypertension in RRM rats as well as in normal rats. Blood pressure was greater in animals with greater degrees of RRM for a given ouabain dose.  相似文献   

14.
16 male Sprague-Dawley rats previously trained to criterion on an 8-arm radial maze received either bilateral 6-hydroxydopamine lesions of the dorsal noradrenergic bundle (DNB) or control surgery. Following a 3-wk recovery period, Ss were trained on the same radial maze in 2 novel environments in which they received posttraining systemic treatment with the opiate antagonist naloxone HCl (2 mg/kg) or vehicle injection. In Ss that received control surgery, opiate antagonist treatment produced a reliable enhancement of performance. Although DNB-lesioned Ss did not differ from controls under the saline treatment condition, denervation of forebrain norepinephrine (NE) was found to prevent the memory-enhancing effect of posttraining naloxone administration. Results indicate that enhanced retention obtained with opiate antagonist administration depends on intact NE function. (31 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
The present study was carried out to investigate the ability of clodronate to inhibit ovariectomy-induced bone loss and increased bone turnover in rats. Estradiol was administered as a reference compound. Seventy Sprague-Dawley rats were ovariectomized (OVX) or sham-operated (Sham) at the age of 90 days and divided into seven groups. Two Sham and two OVX groups received subcutaneously either the vehicle of clodronate or the vehicle of estradiol. Other OVX groups were given s.c. either disodium clodronate at two dose levels (5 mg/kg or 12.5 mg/kg twice a week) or 17 beta-estradiol (10 micrograms/kg five times a week) for 8 weeks. Femur length, volume, dry weight, and ash weight were determined, and proximal ends of tibiae were used for bone histomorphometry. Markers of bone metabolism were measured from urine and serum. A significant loss of 54% of trabecular bone area of proximal tibial metaphysis was found at 8 weeks after ovariectomy. Clodronate and estradiol inhibited (p < 0.001) this osteopenia. Both drugs prevented the decrease in ash weight/volume of the femur. The inhibitory effect of clodronate and estradiol on bone resorption in OVX rats could be detected also in decreased urinary excretion of hydroxyproline and lysylpyridinoline (p < 0.001). Clodronate and estradiol decreased (p < 0.001) the ovariectomy-induced enhanced tibial endocortical mineral apposition rate (Ec.MAR) on the lateral cortex to the level of the Sham group. In contrast, periosteal MAR analyzed on the medial side of tibial cortical bone did not change significantly in the OVX/Veh group. Estradiol decreased periosteal MAR to below the level in the Sham group (p < 0.01). These results suggest that ovariectomy of growing rats resulted in tibial and femoral osteopenia two months later. Clodronate as well as estradiol can suppress bone resorption and turnover in ovariectomized rats, inhibiting the development of osteopenia. Both clodronate doses (5 and 12.5 mg/kg) had beneficial effects in ovariectomized animals.  相似文献   

16.
The lordosis-inhibiting effects of the 5-HT1A receptor agonist, (+/-)8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), were examined in ovariectomized rats, hormone primed with 2.5, 7.5, or 25 micrograms estradiol benzoate plus 500 micrograms progesterone. 8-OH-DPAT (50, 100 or 200 ng per bilateral site) infused into the ventromedial nucleus of the hypothalamus (VMN), inhibited lordosis behavior in all hormone-treated conditions. However, animals primed with 2.5 micrograms estradiol benzoate were significantly more affected by the infusion than rats primed with 7.5 or 25 micrograms of the hormone. These findings strengthen prior speculations that 5-HT1A receptor function is modulated by estrogen.  相似文献   

17.
The effects of the NMDA receptor antagonist AP5, the nitric oxide synthase (NO) inhibitor NO-arg or the protein kinase A (PKA) inhibitor KT5720 on memory were evaluated. Rats bilaterally implanted in the CA1 region of the dorsal hippocampus were trained and tested in a step-down inhibitory avoidance task, and rats unilaterally implanted in the left posteroventral region of the caudate nucleus were trained and tested in a cued water maze task. Previous findings from this and other laboratories had found that lesions or pharmacological treatments of these sites significantly altered memory of these two tasks. Immediately after training, animals received intrahippocampal or intracaudate 0.5 microliter microinfusions of saline, AP5, NO-arg or KT5720. All three drugs impaired retention of inhibitory avoidance, but did not affect retention of the cued water maze. The findings suggest that NMDA receptor-, NO- and PKA-mediated processes in the dorsal hippocampus, but not in the caudate nucleus, are involved in memory.  相似文献   

18.
Repeated morphine treatments result in sensitization, an increase in the efficacy of morphine to stimulate locomotor activity. study examined the effects of increasing serotonin (5-hydroxytryptamine, 5-HT) transmission on morphine-sensitization. For five days rats were administered saline or 5.0 mg/kg fluoxetine prior to treatment with saline or 5.0 mg/kg morphine. Twenty-one days later, rats were tested for their locomotor response to 2.0 mg/kg morphine. Fluoxetine treatment attenuated the locomotor activating effect of acute morphine treatments and blocked the sensitized response to the morphine challenge. These results indicate that increased 5-HT transmission attenuates the locomotor stimulating effects of morphine and prevents the development of morphine-sensitization.  相似文献   

19.
Memory of a novel object was examined in saline (Sal) and scopolamine (Scopo) treated rats (1.0 mg/kg). Scopo rats showed lower overall exploration time than Sal rats, resulting mainly from shorter durations per contact. In a second exposure to the same object, after 1 min or 20 min interval, both groups displayed marked decrease of exploration indicating between-session habituation. The shorter time spent by Scopo rats on investigation of an object during a single approach might be interpreted as a deficit in maintenance of attention. Nevertheless, Scopo rats were able to acquire sufficient information for the retention during 20 min interval, as indicated by habituation, which is an elementary index of memory.  相似文献   

20.
The effects of intracerebroventricular administration of dynorphin A(1-13) on scopolamine- and pirenzepine-induced amnesia were investigated in mice by observing the step-down-type passive avoidance response and spontaneous alternation performance. The pre- or post-training, or preretention administration of dynorphin A(1-13) (0.3-10 micrograms) alone failed to affect the passive avoidance response, while scopolamine (1 mg/kg) significantly inhibited it. Dynorphin A(1-13) (1 microgram) given 15 min before training and retention tests, but not immediately after training, significantly improved the scopolamine (1 mg/kg)-induced impairment of passive avoidance response, indicating the anti-amnesic effects of dynorphin A(1-13). A lower dose (1 mg/kg) of the kappa-opioid receptor antagonist (-)-(1R,5R,9R)-5,9-diethyl-2-(3-furyl-methyl)-2'-hydroxy-6,7-benzomorpha n reversed the anti-amnesic effects of dynorphin A(1-13) (1 microgram). In contrast, although dynorphin A(1-13) (1, 3 and 10 micrograms) did not influence spontaneous alternation performance, scopolamine (1 mg/kg) and the muscarinic M1 receptor antagonist pirenzepine (3 micrograms) markedly decreased spontaneous alternation performance. Dynorphin A(1-13) (3, 5.6 and/or 10 micrograms) significantly improved the scopolamine (1 mg/kg)- and pirenzepine (3 micrograms)-induced impairment of spontaneous alternation performance. The improving effects of dynorphin A(1-13) (3 micrograms) were almost completely reversed by pretreatment with nor-binaltorphimine (4 micrograms), a kappa-selective opioid receptor antagonist. These results suggest that the stimulation of kappa-opioid receptors improves memory dysfunctions resulting from the blockade of muscarinic M1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号