首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为了获得性能优异的碳纳米纤维负极材料并对材料的碳化工艺进行探讨,利用静电纺丝技术和高温碳化制备一维碳纳米纤维负极材料。对获得的碳纳米纤维的形貌、化学成分结构及电化学性能进行测试分析,得到优化的预氧化和碳化条件。结果表明:在预氧化条件为250℃、120 min,碳化条件为800℃、120 min条件下制得的碳纳米纤维具有较好的形貌特征及化学性能,平均直径为190 nm,此时碳结构更加有序,碳含量达到73.7%。通过组装锂离子电池测试电池充放电性能,得到在100 mA/g的电流密度下,放电比容量达到568.4 mAh/g,经过100圈循环后容量保持率达77.3%。  相似文献   

2.
针对Si材料储能过程中体积膨胀的问题,首先采用静电纺丝技术制备聚丙烯腈(PAN)/Si /Fe复合纳米纤维(NFs)膜,然后经化学气相沉积法在复合NFs膜上生长碳纳米管(CNTs),最后经800 ℃炭化得到PAN基Si/C/CNTs复合碳纳米纤维(CNFs)膜。借助扫描电子显微镜、透射电子显微镜、X射线衍射仪、热重分析仪等表征复合CNFs膜的结构与性能,并将其用于锂离子电池负极进行电化学性能测试。结果表明:用添加质量分数为15% 的FeSO4(占PAN)催化剂的纺丝液制备的复合CNFs膜具有独特毛毛虫结构,其可有效提升电池的电化学性能,具有2 067.9 mA·h/g的初始放电比容量,循环400圈后仍具有851.2 mA·h/g 的放电比容量,每圈的容量衰减率仅为 0.15%。  相似文献   

3.
为改善硅/碳纳米纤维的形貌结构并提升其储能性能,将球磨均匀的Si/TiO2粉末和聚丙烯腈(PAN)通过静电纺丝制得Si/TiO2/PAN纳米纤维膜,然后分别在氩气和氢气氛围中炭化得到Si/TiO2复合碳纳米纤维;优化了Si与TiO2的最佳配比与最适炭化温度,分析了纤维形貌、分子结构、元素分布对复合碳纳米纤维储能性能的影...  相似文献   

4.
以苯酚和甲醛为原料合成热固性酚醛树脂,使用六针头静电纺丝设备在最佳纺丝参数条件下纺制均匀的酚醛纳米纤维电纺膜,经碳化、活化处理后获得酚醛基活性碳纳米纤维膜.测试结果表明:在1000℃下碳化处理2h,再在800℃下使用KOH为活化剂活化处理90 min,可得到比表面积为1673 m2/g的酚醛基活性碳纳米纤维膜.该膜以微孔为主,平均孔径为2.02 nm,总孔容为0.832 cm3/g,产率为37.9%.所制聚酰亚胺(PI)电纺膜/酚醛基活性碳纳米纤维膜/玻璃纤维针刺毡复合材料的过滤效率大多为99.5% ~ 99.9%,过滤阻力为117~176 Pa,满足国标对高温气体过滤材料的要求,具有过滤高温气体的潜能,能在有效过滤PM2.5颗粒的同时吸附有害气体.  相似文献   

5.
王曙东 《国外丝绸》2007,22(5):27-29
静电纺丝技术近年来在制备纳米纤维领域得到了广泛的应用,被认为是最简单有效的方法之一,运用这种方法已成功地制备了各种纳米纤维。本文主要综述了静电纺丝技术在制备复合纳米纤维所用的原料及装置方面的研究进展。  相似文献   

6.
以聚乙烯吡咯烷酮作为高分子中间体,五水四氯化锡作为锡源,二氧化硅纳米颗粒作为掺杂,通过静电纺丝技术制备了二氧化锡及掺杂纳米纤维。利用二氧化锡、二氧化硅不同的化学性质,使用氢氟酸蚀刻的方法制备了多孔二氧化锡纳米纤维。采用扫描电子显微镜及投射电子显微镜观察了氢氟酸蚀刻前后纤维形貌的变化;利用X射线衍射仪以及能量色散X射线能谱仪分析了二氧化锡及掺杂纤维的晶型结构,特别是验证了纤维比表面积的变化。实验结果表明:随着掺杂二氧化硅颗粒含量的增加,二氧化锡纤维直径变粗,表面粗糙度增加;经过氢氟酸蚀刻后的二氧化锡纳米纤维出现了一定程度的溶胀现象,二氧化硅颗粒成功被蚀刻,纤维比表面积提高。  相似文献   

7.
采用静电纺丝的方法制备聚丙烯腈/醋酸锌复合纳米纤维膜,然后经过预氧化、炭化,得到碳/氧化锌复合纳米纤维膜,通过SEM、FT-IR、TEM、EDS、四探针法来表征纳米纤维膜的各项性能。结果表明:在270℃下预氧化2 h,然后经过800℃煅烧1 h后可制得成型良好的碳/氧化锌复合纳米纤维膜;碳/氧化锌复合纳米纤维的直径小于相应的聚丙烯腈/醋酸锌复合纳米纤维;纺丝溶液中醋酸锌的加入提高了最终碳纳米纤维的热稳定性;炭化后的复合纳米纤维表面及内部生成了均匀分散的ZnO纳米颗粒;复合碳纳米纤维膜的电阻率高于纯的碳纳米纤维膜,且电阻率随着ZnO含量的增加而增加。  相似文献   

8.
为获得力学性能较好的聚丙烯腈(PAN)基实心和多孔碳纳米纤维,以自制相对分子质量30万的PAN为原料,利用静电纺丝技术制备了PAN和PAN/聚甲基丙烯酸甲酯纳米纤维,经预氧化、碳化后分别获得了新型纳米纤维。利用扫描电镜观测了纳米纤维和碳纳米纤维的表面形态,并对纳米纤维和碳纳米纤维的直径分布进行了表征。结果表明:相对分子质量为30万的PAN适宜纺丝质量分数为6%,PAN纳米纤维的平均直径为1 242 nm。在PAN纺丝液中加入PMMA后,纳米纤维的平均直径下降至519 nm,且直径分布变窄;预氧化过程中施加张力可以使碳纳米纤维保持较好的纤维形状;碳化处理后的PAN和PAN/PMMA纳米纤维的直径都明显减小,前者减小为683 nm,后者为374 nm;扫描电镜照片显示,加入PMMA后PAN碳纳米纤维呈多孔结构。  相似文献   

9.
静电纺聚砜酰胺纳米纤维的制备与性能表征*   总被引:2,自引:0,他引:2  
利用自制的静电纺丝装置制备了一系列聚砜酰胺( PSA)纳米纤维,并探讨了PSA纺丝液固含量、纺丝电压及纺丝距离对PSA纤维形态结构、结晶性能和热性能的影响。试验结果表明:当纺丝液固含量为12%(质量分数)、纺丝电压为28 kV和纺丝距离为15 cm时,可制得直径小于100 nm的PSA纳米纤维;纺丝液固含量、纺丝电压及纺丝距离对纤维结晶性能及热性能均有一定的影响,其中纺丝距离对两种性能的影响较为复杂。  相似文献   

10.
静电纺丝法制备木质素基纳米纤维   总被引:1,自引:0,他引:1  
以N,N-二甲基甲酰胺为溶剂,对不同比例的乙酸木质素(AAL)与聚乙烯吡咯烷酮(PVP)混合溶液,AAL与聚丙烯酸酯(polyacrylate)混合溶液,AAL与聚乙烯醇(PVA)混合溶液三种溶液体系进行静电纺丝。用扫描电子显微镜观察了纳米纤维的表面形貌。结果表明:AAL与PVA混合溶液通过电纺不能得到纳米纤维。通过电纺可以得到直径均匀、表面光滑的AAL与PVP混合纳米纤维,AAL与聚丙烯酸酯混合纳米纤维,并且AAL含量的增加对混合纳米纤维的直径和表面形貌没有明显的影响。进而对单一AAL的静电纺丝进行了研究,分别研究了THF,DMF,乙酸等不同的溶剂体系,发现只有以乙酸为溶剂才能电纺成纤。  相似文献   

11.
为制备具有较高孔隙率的聚丙烯腈(PAN)活性中空碳纳米纤维(AHCNF),以自行制备的PAN为原料,经同轴静电纺丝、预氧化、炭化、活化后制备得到AHCNF,借助X射线光电子能谱仪、扫描电子显微镜、比表面积测试仪研究了致孔剂对其形态与孔结构的影响。结果表明:制备的PAN共聚物环化温度较低,环化放热较缓和,有利于预氧化的进行;炭化过程将PAN表面的碳氧单键转化为碳氧双键,而活化过程将碳氧双键进一步转化为酯基;添加致孔剂和未添加致孔剂得到的PAN活性中空碳纳米纤维横截面呈明显的中空结构,纤维壁较为致密;添加致孔剂后,活性中空碳纳米纤维的总比表面积从55.719 m2/g增加到532.639 m2/g,孔容从0.070 cm3/g增加到0.312 cm3/g,介孔平均孔径从3.408 nm增加到4.309 nm,收率从27.14%降低到9.44%。  相似文献   

12.
为获得比常规静电纺丝纤维直径更细的聚丙烯腈(PAN)纳米纤维,采用复合静电纺丝方法制备了聚丙烯腈/醋酸丁酸纤维素(PAN/CAB)复合纳米纤维,再溶解掉复合纳米纤维中的CAB组分,得到超细PAN纳米纤维并对其进行氨基化改性后用于吸附直接红23(DR23)染料。研究了PAN和CAB的混合比例、纺丝溶液质量分数和纺丝液挤出速度3个因素对所得PAN 纳米纤维直径的影响,并比较了常规静电纺和复合静电纺制备出的PAN纳米纤维改性后的染料吸附量。实验结果表明:该方法制得的PAN纳米纤维的平均直径在50~80 nm范围内,其中当PAN和CAB的质量比为15:85、纺丝溶液质量分数为15%、纺丝液挤出速度为1.5 mL/h、纺丝电压为10 kV、接收距离为20 cm时,得到的PAN纳米纤维的平均直径为50 nm;改性后纳米纤维对DR 23的平衡吸附量达833mg/g。  相似文献   

13.
 以PA6、多壁碳纳米管(MWNTs)为原料,利用自制的静电纺丝装置,探索了碳纳米管增强PA6纳米纤维纱的连续静电纺丝。研究了纺丝电压、纺丝高度、电场强度等参数对PA6/MWNTs纳米纤维纱的结构与性能的影响。结果表明:随着电压的增大,纤维和纱线的直径、纤维结晶度、断裂强力增加,纤维间黏连减少;随着纺丝高度的增加,纤维的定向排列程度、纤维结晶度提高,纱线断裂强度和初始模量增加;电场强度一定时,随着电压和纺丝高度的增加,纤维的平行排列程度提高,纱线的断裂强力、断裂伸长率、初始模量和断裂强度都增大。  相似文献   

14.
为提高纤维状超级电容器的电容性能,将碳纳米管(CNT)纤维进行阳极氧化预处理、金属化处理和电沉积聚苯胺后得到不同的电极材料,分别将CNT、CNT/聚苯胺(CNT-PANI)、CNT/阳极氧化/聚苯胺(CNT-O-PANI)、CNT/阳极氧化/金属化/聚苯胺(CNT-O-Ni-PANI)这4种电极材料组装纤维状超级电容器,并对其结构和电化学性能进行研究。结果表明:经过阳极氧化和金属化处理后,聚苯胺均匀、紧密地分散在碳纳米管纤维表面,并且无团聚、结块等现象;CNT-O-Ni-PANI电极材料制备的超级电容器具有优异的储能性能,其比电容和能量密度远高于其他3种电极材料;在1 A/g的电流密度下,其比电容和能量密度分别为357.8 F/g和178.9 W·h/kg;在10 mV/s的扫速下,其比电容高达1 246.3 F/g;采用CNT-O-Ni-PANI所制备的超级电容器稳定性能较好,在5 A/g的电流密度下,经过10 000次恒流充放电循环后,其电容保持率仍高达99.7%。  相似文献   

15.
为了研究单宁/醋酸复合纳米纤维在医用辅料方向的应用,利用静电纺丝技术,制备了“纱布-纳米纤维-纱布”形式的夹心式材料。其中,醋酸纤维(CA)的质量分数为11%,单宁(TA)的质量分数为别为1%、3%、5%。测试了单宁的质量分数、缓释温度、缓冲液条件和夹心结构对TA的缓释性能的影响,研究了TA释放的动力学。结果表明:TA质量分数越大,其释放速率越快;温度升高有助于TA的释放;pH对TA的释放有一定影响,表现为酸性条件下TA的累计释放量减小,释放速率降低;夹心材料较单独的纳米膜有更好的控释作用;TA的缓释符合Ritger-Peppas动力模型。  相似文献   

16.
王子希  胡毅 《纺织学报》2020,41(11):10-18
针对锂硫电池循环过程中容量衰减快的问题,采用水热法制备ZnCo2O4纳米颗粒,然后与聚丙烯腈(PAN)混合,通过静电纺丝法制备复合纳米纤维并进行炭化处理得到复合多孔碳纳米纤维。借助扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪、拉曼光谱仪、比表面积测试仪表征复合多孔碳纳米纤维的微观结构和物化性能,优化得到最佳制备工艺;并将其作为正极硫载体测试电化学性能。结果表明:基于ZnCo2O4制备的复合多孔碳纳米纤维存在大量孔孔相连的通道,比表面积高达210.85 m2/g;组装成的锂硫电池具有典型的充放电平台以及明显的氧化还原峰,其初始放电比容量为759.2 mA·h/g,50圈充放电循环后,仍具有74.0%的可逆比容量,相比于不掺杂ZnCo2O4的静电纺丝碳纳米纤维具有更高的比容量,更好的倍率性能。  相似文献   

17.
用静电纺丝的方法制得聚丙烯腈纳米纤维,并在250℃下预氧化,850℃下炭化,得到碳纳米纤维.用扫描电镜观察了静电纺纳米纤维、预氧化后的纳米纤维和炭化后的纳米纤维表面形态结构的变化,采用X射线衍射和红外光谱法分析了原料聚丙烯腈粉末、静电纺纳米纤维、预氧化后的纳米纤维和炭化后的纳米纤维内部结构的变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号