首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 57 毫秒
1.
提出一种多目标扰动生物地理学优化算法(MDBBO)来求解多目标优化问题(MOPs).该算法基于现有群体中非支配可行解的比率,联合个体非支配等级排序和拥挤距离对个体进行评价;在生物地理迁移策略基础上提出扰动迁移算子并应用于群体进化,增强群体多样性;应用归档种群来保存所获得的非支配可行解,并用循环拥挤距离法对其更新,确保群体的均匀分布性.通过标准函数测试以及与经典算法比较表明了该算法求解MOPs的有效性.  相似文献   

2.
基于Pareto的多目标优化免疫算法   总被引:2,自引:0,他引:2  
免疫算法具有搜索效率高、避免过早收敛、群体优化、保持个体多样性等优点。将其应用于多目标优化问题,建立了一种新型的基于Pareto的多目标优化免疫算法(MOIA)。算法中,将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并利用有别于聚类的邻近排挤算法对其进行不断更新,进而获得分布均匀的Pareto最优解。文章最后,对MOIA算法与文献[3]中SPEA算法进行仿真,通过比较两者的收敛性和分布性,得到了MOIA优于SPEA的结论。  相似文献   

3.
多目标微粒群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
通过设计一种Pareto解集过滤器,并在此基础上给出多目标优化条件下的微粒群算法群体停滞判断准则,基于该准则提出了一种多目标微粒群优化算法。算法利用Pareto解集过滤器提高了候选解的多样性,并使用图形法将所提算法与经典的多目标优化进化算法在一组标准测试函数上进行了比较,结果表明算法具有更好的搜索效率。  相似文献   

4.
生物地理学优化算法(Biogeography-Based Optimization,BBO)是一种模仿物种迁移规律的智能优化算法,其中迁移算子是影响优化效果的关键环节.基于迁移地的选择模式(以迁出率高的栖息地为主导或者以迁入率高的栖息地为主导)和迁移量的规模(单变量和部分变量),提出了BBO算法中可能存在的四种迁移方式.通过对13个经典实例的实验仿真,比较4种迁移算子的优化结果,阐明了产生差异的原因.实验结果表明,迁入主导的部分迁移式算子优化效果最好.  相似文献   

5.
演化算法因其内在的并行行,在求解多目标优化问题时具有独特的优势。本文介绍多目标演化算法的基本原理,并详细讨论基于Pareto最优概念的多目标演化算法。  相似文献   

6.
Pareto强度值演化算法求解多目标优化问题   总被引:2,自引:0,他引:2  
近年来,多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点.多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域.本文定义和使用稀松密度来保持群体中个体的均匀分布,并将个体的Pareto强度值和稀松密度合并到个体的适应值定义中.通过对测试函数的实验,验证了算法的可行性和有效性.  相似文献   

7.
为增强生物地理学优化算法(biogeography-based optimization,BBO)的优化能力并克服其不能很好平衡开发能力与避免陷入局部最优解之间的矛盾,提出基于微扰动和混合变异的差分生物地理学优化算法(differential biogeography optimization algorithm ba...  相似文献   

8.
多目标优化的一类模拟退火算法   总被引:16,自引:4,他引:16  
多目标优化是运筹学中的重要研究课题,但迄今仍缺少高效的优化技术。通过对搜索操作和参数的合理设置,提出了一类求解多目标优化问题Pareto最优解的高效模拟退火算法。基于典型算例的数值仿真验证了算法的有效性。  相似文献   

9.
基于模拟退火的多目标优化算法   总被引:1,自引:0,他引:1  
该文剖析了多目标优化问题和物体退火之间的关系,发现两者之间有着天然的联系,并在此联系的基础上,构建了一种新型的多目标优化算法———基于模拟退火的多目标优化算法。最后,基于典型算例的数值仿真验证了算法的有效性。  相似文献   

10.
生物地理学优化算法研究   总被引:2,自引:0,他引:2  
对生物地理学优化算法(biogeography-based optimization,BBO)的研究现状进行了总结,并介绍了一些最新的研究进展。从BBO算法提出的背景出发,讨论了算法的主要思想、算法原理以及算法步骤。论述了该算法的研究进展,包括BBO算法的改进、算法的收敛性分析、BBO算法与其他算法的融合以及BBO算法在优化领域的典型应用,对BBO算法有待研究的问题做了总结。  相似文献   

11.
生物地理学优化算法(BBO)作为一种新型的智能算法,在其提出不到十年的时间内受到学界的广泛关注和研究,并显示出了广阔的应用前景。为了提高算法的优化性能,对BBO算法提出一种改进,该算法在将差分优化算法(DE)中的局部搜索策略同BBO算法中的迁移策略相结合的基础上,针对迁移算子和变异算子分别进行改进,提出了二重迁移算子和二重变异算子,使得栖息地个体在进化过程中得到更高的进化概率,从而使得算法的寻优能力得到进一步提升。通过6个高维函数的测试,结果表明该算法在优化高维优化问题时,较其他几种生物地理学优化算法具有更好的收敛性和稳定性。  相似文献   

12.
针对柔性作业车间调度问题,对生物地理学优化算法中的迁移操作和突变操作进行改进,提出一种改进的生物地理学优化算法。在算法初始阶段采用混合初始化的方法,提高初始种群质量;对迁移操作和突变操作采用不同选择方法,提高算法全局搜索能力,加快收敛速度。通过编程仿真对柔性作业车间调度问题标准测试算例进行运算,并与其他文献中的计算结果进行比较,验证了该算法是可行和有效的,也可用于其他车间调度问题中。  相似文献   

13.
生物地理学优化算法理论及其应用研究综述   总被引:1,自引:0,他引:1  
生物地理学优化算法(Biogeography-Based Optimization,BBO)是Simon提出的一种基于生物地理学理论的新型智能优化算法,具有良好的收敛性和稳定性。从BBO算法提出的背景出发,介绍了算法的基本理论、算法特点以及算法流程。总结了BBO算法的研究进展,包括BBO算法的理论分析、算法的改进、算法与其他优化算法的混合算法以及BBO算法在函数优化、电力系统、图像处理、机器人路径规划以及调度优化等领域的典型应用。对BBO算法有待解决的问题和未来研究方向进行了总结。  相似文献   

14.
针对生物地理学优化算法(biogeography-based optimization, BBO)易早熟收敛、陷入局部最优的问题,引入物种演化理论提出了改进生物地理学优化算法。该算法将所有栖息地按照物种数量划分为三种地区,并建立协同进化关系,合理地采用区间入侵、区内合作/竞争策略,满足多样性的同时避免了早熟收敛。定义了物种更迭和物种进化两种变异策略,提出的双策略协同变异算子旨在解决变异算子对较优解的破坏。通过CEC2017中的八个基准测试函数与标准BBO及相关改进算法相比,该算法在算法性能、稳定性等方面优于BBO及其他改进算法,且该算法不易被局部最优值所限制。将该算法应用于以最大完工时间为目标的柔性作业车间调度问题(flexible Job-Shop scheduling problem, FJSP)以检验其实际应用价值,实验表明,该算法在解决FJSP上具有一定的有效性。  相似文献   

15.
针对柔性作业车间调度问题的特点,提出了一种基于改进生物地理学优化算法的求解方案。该方案采用基于工序和基于机器相结合的编码机制,在初始种群中引入启发式算法生成的优良个体,并在标准生物地理学算法基础上对迁移和变异操作进行了改进,采用符合该调度问题的迁移率模型和自适应变异机制,克服了传统算法易于早熟或收敛慢的缺点。通过仿真验证了该算法的可行性和有效性。  相似文献   

16.
In this paper, a hybrid biogeography-based optimization (HBBO) algorithm has been proposed for the job-shop scheduling problem (JSP). Biogeography-based optimization (BBO) is a new bio-inpired computation method that is based on the science of biogeography. The BBO algorithm searches for the global optimum mainly through two main steps: migration and mutation. As JSP is one of the most difficult combinational optimization problems, the original BBO algorithm cannot handle it very well, especially for instances with larger size. The proposed HBBO algorithm combines the chaos theory and “searching around the optimum” strategy with the basic BBO, which makes it converge to global optimum solution faster and more stably. Series of comparative experiments with particle swarm optimization (PSO), basic BBO, the CPLEX and 14 other competitive algorithms are conducted, and the results show that our proposed HBBO algorithm outperforms the other state-of-the-art algorithms, such as genetic algorithm (GA), simulated annealing (SA), the PSO and the basic BBO.  相似文献   

17.
彭虎  黄伟  邓长寿 《计算机应用》2012,32(2):456-460
微粒群优化(PSO)算法是一种非常有竞争力的求解多目标优化问题的群智能算法,因其容易陷入局部极值,导致非劣解集的收敛性和正确性不理想。为此提出一种基于多目标分解进化策略的多子群协同进化的多目标微粒群优化算法(MOPSO_MC),算法中每个子群对应于一个多目标分解之后的子问题,并构造了一种新的速率更新策略,每个粒子跟踪自身历史最优值、子群最优值和子群邻域最优值,从而在增强算法的局部寻优能力的同时,也能从邻域子群获得进化信息,实现协同进化。最后通过仿真实验,与现在主流的多目标微粒群算法在ZDT基准测试函数上比较,验证了算法的收敛性,解分布的均匀性和正确性。  相似文献   

18.
基于改进混沌优化的多目标遗传算法   总被引:8,自引:0,他引:8  
王瑞琪  张承慧  李珂 《控制与决策》2011,26(9):1391-1397
针对多目标遗传算法存在的缺陷,提出了基于改进混沌优化的多目标遗传算法.引入基于改Tent映射的自适应变尺度混沌优化方法细化搜索空间和高效寻优,结合非支配排序的群体分级机制和精英保留等多目标优化策略,保持种群多样性的同时保证了进化向Pareto优解集的方向进行.多目标测试函数的数值仿真和电力系统无功优化的算例分析表明了该算法的有效性和可行性.  相似文献   

19.
为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号