首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nickel-containing mixed-alkali borate glasses were prepared and their spectral absorption in the visible and near-ir were measured and used to determine the ligand field strength, Racah parameter, and state of coordination of Ni2+ ions. The change in these parameters with alkali content is discussed in terms of mixed-alkali effect. Nickel ions were found to occupy octahedral sites in the 20 mol% (Li2O+Na2O) glasses, whereas in the 30 mol% (Na2O+K2O) glasses NiZ+ ions are believed to occupy both octahedral and tetrahedral sites. In most cases slight deviations were observed which increased with increasing alkali content. The results obtained suggest that the substitution of one alkali for another in alkali borate glasses did not produce gross alterations of the glass network sufficient to induce deviations from linearity in property-composition relations.  相似文献   

2.
Absorption spectra of Ti3+ were measured for silicate, borate, and phosphate glasses doped with 0.5 mol% Ti2O3.The absorption coefficient at the peak wavelength of the 2T22E transition of Ti3+ is used as a parameter showing the relative content of Ti3+ions in glass samples. The effect of glass composition on Ti3+/Ti4+ redox was studied. For multicomponent glasses, a basicity parameter calculated from glass composition is proposed in terms of coulomb force between the cation and the oxygen ion. The value of the absorption coefficient depends on basicity in silicate and borate glasses; however, it is independent of composition in phosphate glasses.  相似文献   

3.
4.
In this paper, the spectroscopic properties of bismuth borate glasses doped with different Nd3+ concentrations have been investigated. The intensity parameters Ω t ( t =2, 4, 6), spontaneous emission probability, fluorescence lifetime, radiative quantum efficiency, fluorescence branching ratio, and stimulated emission cross section were determined. The highest radiative quantum efficiency of the glasses is 54%. The optimal Nd3+ concentration in the glasses is proposed for high quantum efficiency. The good spectroscopic properties show the possible utilization of the Nd3+ doped bismuth borate glasses as laser materials.  相似文献   

5.
The Fe2+/Fe3+ ratios of 47 simulated nuclear waste glass samples with ratios varying from 0.01 (oxidized) to 1.6 (reduced) were determined by wet-chemical and Mössbauer spectral analyses. The wet-chemical method involved the spectrophotometric determination of Fe2+ and total iron using remote spectroscopy with fiber optic chemical sensing. Interferences from other species present in these glasses were examined and alternative analytical techniques were investigated. Results of wet-chemical and Mössbauer spectral analysis were comparable; however, the wet-chemical method is probably preferable for the analysis of highly radioactive glasses until such glasses have been shown to have satisfactory Mössbauer spectra.  相似文献   

6.
Eu2O3-doped aluminoborosilicate glasses were prepared in air at high temperature. Luminescence measurements were used to investigate a valence change from Eu3+ to Eu2+ ions in the aluminoborosilicate glasses. The results showed that the doped Eu3+ ions were partially reduced to Eu2+ in the Eu2O3:RO–Al2O3–B2O3–SiO2 (RO=CaO, SrO, BaO, Li2O) glasses, but not in the Eu2O3:RO–Al2O3–B2O3–SiO2 (RO=Na2O, K2O) glasses. The changes of Eu reduction with different RO components were discussed with the variation of optical basicity of RO and with different valency of R cations. The effects of co-doping BaO and ZnO in aluminoborosilicate glasses on Eu reduction were also investigated and discussed.  相似文献   

7.
Glasses activated with Mn2+ exhibit green to red luminescence. A widely accepted model proposes that these colors denote 4- and 6-coordination, respectively, for Mn2+. The luminescence and absorption of Mn2+-activated silicate glasses were studied; the luminescence changed from green to red with increasing Mn2+ concentration. The difference in the intensities of emission bands with peaks near 520 and 620 nm accounts for the luminescent color. No experimental evidence for a change in coordination from 4 to 6 was found. Exchange-coupled groupings are proposed to explain red emission in these glasses and possibly in borate and phosphate glasses studied by other workers. Improved resolution of bands and theoretical calculations demonstrate that a covalent-octahedral Mn2+ species can account for the spectral data for the silicate glasses.  相似文献   

8.
The integrated absorption cross section, the spontaneous emission probability, and the stimulated emission cross section of Yb3+ were determined in silicate, phosphate, borate, germanate, aluminate, gallate, and ZBLAN host glasses. The compositional dependence of the stimulated emission cross section of the 2F5/22F7/2 transition is determined mainly by the integrated absorption cross section in the glasses. A peak stimulated emission cross section above 1 pm2, which is the highest value in glasses, was obtained in a gallate glass with a composition of 40K2O·20Ta2O5. 40Ga2O3. The factors affecting the integrated absorption cross section are discussed using the Judd-Ofelt parameters of Er3+ calculated in previous studies.  相似文献   

9.
Electron spin resonance spectra of high-spin Co2+ doped in alkali borate and alkali germanate glasses have been measured at 4.2 K. For comparison, the corresponding spectrum in a 33K2O·67SiO2 glass has also been measured. On the basis of the spectral line shape, the observed spectra, together with those in the literature, seem to be classified into four spectral types that represent Co2+ ions in octahedral coordination, a mixture of some types of coordination, tetrahedral coordination with nearly axial symmetry, and distorted tetrahedral coordination.  相似文献   

10.
11.
A molecular dynamic simulation was performed for sodium borate glasses containing a small amount of Eu2O3 to investigate the local structures of cations in glass. A new potential VB-B in the form -A exp[-C(r - 0.239)2] was added to the regular modified Born-Mayer-Huggins-type potentials, ΦB-B, ΦB-O, and ΦO-O, to account for the directional tendency of the borate network structure. With this potential added, both the radial distribution of sodium borate glasses observed by small-angle X-ray diffraction and the change in coordination number of boron with sodium content obtained by NMR agreed well with the simulation. The average coordination number of Ed3+ ions in the simulated glasses varied from 7.5 to 8.6, depending on the composition of the host sodium borate glasses. The inhomogeneous line width of the 5D0-7Fz emission peak also changed, depending on the sodium content, with a maximum at 18 mol% NazO content; this result agrees well with experimental data obtained from laser-induced fluorescence spectra.  相似文献   

12.
Compositional dependence of spontaneous emission probabilities between initial 4 F 3/2 and terminal 4 I J J = 9/2, 11/2, 13/2, 15/2) levels of Nd3+ were studied for about 90 samples of silicate, borate, and phosphate glasses using the Judd–Ofelt theory. The effect of the covalency of the Nd–O bond on the magnitude of intensity parameters was estimated from the variation of spectral profiles of the 4 I 9/24 G 5/2, 2 G 7/2 and 4 F 7/2, 4 S 3/2 transitions. Intensity parameters Ω4 and Ω6 and the spontaneous emission probabilities were strongly affected by the ionic packing ratio of the glass host. The results were discussed in terms of the site selectivity of Nd3+ ions in glasses.  相似文献   

13.
The effect of Mn doping on the cubic to hexagonal phase transition temperature in BaTiO3 has been determined by quenching samples with different Mn contents from a range of temperatures. Under conditions of equilibrating samples in air over the range 1000°–1400°C, cubic solid solutions BaTi1− x Mn x O3−δ form over the range 0≤ x ≤0.015(5), whereas hexagonal solid solutions form for x ≥0.02, depending on the temperature. The results are compared with those on doping BaTiO3 with Fe3+ and observations made concerning acceptor doping with Ti3+.  相似文献   

14.
A study of the high-alkali region of glass formation in the system Na2O +B2O3 reveals that retention of CO2 from carbonate starting materials can become a serious preparative problem at the high-alkali extreme. Results presented for glasses prepared using both Na2O and Na2CO3 show that residual CO2 can lead to major differences in physical properties which in this work are represented by the viscosity-related glass transition temperature .  相似文献   

15.
Emission properties and energy transfer of PbO–Bi2O3–Ga2O3–GeO2 glasses codoped with Tm3+ and Tb3+ ions were investigated. The 1.48-μm emission due to the Tm3+:3H43F4 transition can be used to amplify the S-band (1460–1530-nm) signal light. With Tb3+ addition, the lifetime and emission intensity of the Tm3+:3F4 level decreased sharply via the Tm3+:3F4→Tb3+:7F0,1,2 energy transfer. Population densities of the 3F4 and 3H4 levels in Tm3+ calculated from rate equations clearly verified that population inversion in Tm3+ ions became possible with as little as 0.1 mol% of Tb3+ addition.  相似文献   

16.
The influence of the Fe3+/Fe2+ ratio on the crystallization of iron-rich glasses was investigated in this study. The glass batches were made from two hazardous industrial wastes: mud (goethite and jarosite) originating from the zinc hydrometallurgical process and electric arc furnace dust (EAFD). Glass compositions were prepared by adding different percentages of carbon powder. The crystallization process was investigated by a combined thermogravimetry/differential thermal analysis technique, in air or nitrogen atmospheres, using powder and bulk glass samples. The crystalline phases formed, i.e., pyroxene and spinels, and their relative ratio were determined by X-ray diffractometry. The experimental results indicated that melting temperature and crystallization behavior were influenced by the initial Fe3+/Fe2+ ratio and by the amount of carbon added to the glass batch. For goethite and jarosite glass compositions, decreasing the Fe3+/Fe2+ ratio increased the crystallization rate by favoring magnetite formation. For EAFD glass compositions, the addition of carbon to the batch inhibited chromite–magnetite spinel formation and favored the attainment of an amorphous glassy phase.  相似文献   

17.
18.
Excitation of Tm3+ to 3 H 4 using the 791 nm pump source showed the frequency up-converted blue emission (∼480 nm) due to the Tm3+:1 G 43 H 6 transition in Tm3+/Nd3+ codoped CaO·Al2O3 glasses. Intensity and lifetime changes with rare-earth concentrations suggested the efficient energy transfer of Tm3+:3 H 4→ Nd3+:4 F 5/2 and Nd3+:4 F 3/2→ Tm3+:1 G 4. The latter transfer enabled Tm3+ to reach its 1 G 4 level, and the blue emission became possible through the 1 G 43 H 6 transition. Quantitative analysis with rate equations proved that these two transitions were the most efficient among all the possible energy transfer routes between Tm3+ and Nd3+. Calculated up-conversion efficiency of the Tm3+/Nd3+ combination in CaO·Al2O3 glass was 6.6 × 10−3, and it was ∼4 orders of magnitude larger than those reported for other oxide glasses.  相似文献   

19.
Emission properties of 2.0 μm fluorescence and the energy transfer between Ho3+ and Tm3+ in 57PbO·25Bi2O3·18Ga2O3 (mol%) glass codoped with Ho3+ and Tm3+ were investigated. Cross-relaxation rates in Tm3+ increased approximately 5 times when the Tm2O3 concentration was increased from 1.0 to 1.5 wt%. Coefficients of the forward Tm3+→ Ho3+ energy transfer were about 15 times larger than those of the Tm3+← Ho3+ backward transfer. Analysis of the energy transfer and gain spectra indicated that the highest gain at the 2.0 μm wavelength region could be achieved from the glass with 1.5 wt% of Tm2O3 and 0.3 wt% of Ho2O3.  相似文献   

20.
Electron paramagnetic studies showed that Ti3+ and Fe2+ occur in mullites taken from a refractory material which was fused-cast under a reducing atmosphere. Exposure of the mullite samples to temperatures >1600°C caused oxidation of Ti3+ and Fe2+ to Ti4+ and Fe3+, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号