共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxide ceramics for use as electrical insulators in future fusion devices, will be exposed to ionization and displacement damage (neutrons, gammas, ion bombardment). Enhanced oxygen loss due to ion bombardment increases surface electrical conductivity, and at the same time the surface emits light due to ion beam induced luminescence (IBIL). Results for 3 types of α-alumina and sapphire measuring electrical surface conductivity and IBIL as a function of dose at different temperatures between 20 and 200 °C, show a clear correlation between luminescence and surface electrical degradation. This indicates the potential to remotely monitor insulating material degradation not only in ITER and beyond, but also in the more immediate in-reactor experiments required for materials testing. Partial reduction of degradation by heating in air suggests the possibility for in situ recovery of the insulating properties. 相似文献
2.
Ion beam induced luminescence (IBIL) has been used for studying the emission features and the radiation hardness of white pigments. In particular, ZnO, gypsum and basic lead sulphate pigments have been analyzed with a 3.0 MeV H + beam at the AGLAE Louvre laboratory. The same pigments mixed with different binders have been also analyzed on a canvas, in order to evaluate the contribution of the binders both to the IBIL spectra and to the radiation hardness. It turns out that the binder affects both the IBIL spectra and the radiation hardness of pigments when the emission bands are related to point defects, as occurs for ZnO. 相似文献
3.
The evolution of the ion beam induced luminescence (IBIL) of the polyethylene terephthalate (PET) foils was studied under the irradiation of H and He ions of MeV energy. The optical and chemical changes of the samples were also examined by photo-stimulated luminescence and optical absorption measurements after the irradiation. A prominent broad emission peak of IBIL appeared at around 380 nm, and its intensity monotonically decreased during the ion irradiation. The decay curves of the emission intensity were quantitatively explained as a function of the electronic energy deposition of the incident H and He ions. On the contrary, to the decrease of the main emission peak, a growth of new peaks was observed in the wavelengths between 500 and 600 nm. 相似文献
4.
The change in lattice parameter and the induced damage are studied in single crystal CaF 2 bombarded by a 15 MeV Cl ion beam. The lattice parameter change (strain) and the damage for increasing ion beam dose (5 × 10 12/cm 2 to 7 × 10 15/cm 2) is observed via X-ray rocking curve analysis using a double-crystal diffractometer and X-ray reflection topography. The ion beam energy (range = ~ 4.5 μm in CaF 2) is such that both the electronic region and the nuclear cascade region of energy loss show up in the diffraction signal. By kinematical X-ray diffraction theory analysis, the progress of strain/damage depth profile with increasing beam dose is shown explicitly. The increase in strain is nonlinear with beam dose for the dose range studied. For increasing beam dose, the strain level in the electronic energy loss region is fixed, while that in the nuclear collision loss region increases effectively until that region becomes completely amorphous. 相似文献
5.
South Africa is developing a new type of high temperature nuclear reactor, the so-called pebble bed modular reactor (PBMR). The planned reactor outlet temperature of this gas-cooled reactor is approximately 900 °C. This high temperature places some severe restrictions on materials, which can be used. The name of the reactor is derived from the form of the fuel elements, which are in the form of pebbles, each with a diameter of 60 mm. Each pebble is composed of several thousands of coated fuel particles. The coated particle consists of a nucleus of UO 2 surrounded by several layers of different carbons and SiC. The diameter of the fuel particles is 0.92 mm. A brief review will be given of the advantages of this nuclear reactor, of the materials in the fuel elements and their analysis using ion beam techniques. 相似文献
6.
Light emission from a silicon dioxide layer enriched with silicon has been studied. Samples used had structures made on thermally oxidized silicon substrate wafers. Excess silicon atoms were introduced into a 250-nm-thick silicon dioxide layer via implantation of 60 keV Si + ions up to a fluence of 2 × 10 17 cm −2. A 15-nm-thick Au layer was used as a top semitransparent electrode. Continuous blue light emission was observed under DC polarization of the structure at 8-12 MV/cm. The blue light emission from the structures was also observed in an ionoluminescence experiment, in which the light emission was caused by irradiation with a H 2+ ion beam of energy between 22 and 100 keV. In the case of H 2+, on entering the material the ions dissociated into two protons, each carrying on average half of the incident ion energy. The spectra of the emitted light and the dependence of ionoluminescence on proton energy were analyzed and the results were correlated with the concentration profile of implanted silicon atoms. 相似文献
7.
Al 2O 3 thin films find wide applications in optoelectronics, sensors, tribology etc. In the present work, Al 2O 3 films prepared by electron beam evaporation technique are irradiated with 100 MeV swift Si 7+ ions for the fluence in the range 1 × 10 12 to 1 × 10 13 ions cm −2 and the structural properties are studied by glancing angle X-ray diffraction. It shows a single diffraction peak at 38.2° which indicates the γ-phase of Al 2O 3. Further, it is observed that as the fluence increases up to 1 × 10 13 ions cm −2 the diffraction peak intensity decreases indicating amorphization. Surface morphology studies by atomic force microscopy show mean surface roughness of 34.73 nm and it decreases with increase in ion fluence. A strong photoluminescence (PL) emission with peak at 442 nm along with shoulder at 420 nm is observed when the samples are excited with 326 nm light. The PL emission is found to increase with increase in ion fluence and the results are discussed in detail. 相似文献
8.
The radiation hardness of polysiloxane based scintillators has been measured by ion beam induced luminescence (IBIL). The light intensity as a function of the irradiation fluence with an He + beam at 1.8 MeV (1.0 μA/cm 2) has been measured on undoped polymers synthesized with different amounts of phenyl units and on polysiloxanes doped with two different dye molecules (BBOT and Lumogen Violet) sensitizing the scintillation yield. 相似文献
9.
In this work we present our results concerning the formation of self-organized nanoscale structures during the bombardment with a low-energy defocused Ar ion beam. We studied glass surfaces because of their physical properties, technological interest and cheapness. The evolution of sample surface was studied ex situ by atomic force microscopy. We found, in agreement with Bradley and Harper, a morphology characterized by a regular ripple structure with the wave vector perpendicular or parallel to the ion beam direction. This structure periodicity was found to vary in the range 90–350 nm with a linear time evolution. In order to gain further information about the sputtering process and for comparison with the existing continuum theories of surface erosion, we studied the scaling behaviour of surface roughness. 相似文献
10.
Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems.X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 × 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold.Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of and aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed.The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering.Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 10 15 to 250 × 10 15 ions/cm −2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show evidence of a strained lattice after the proton bombardment and recovery after long period storage. The effects are attributed to the annealing of the defects produced. 相似文献
13.
To investigate the nonlinear dose dependence of the thickness of the recrystallized layer during ion beam induced epitaxial recrystallization at amorphous/crystalline interfaces GaAs samples were irradiated with 1.0 MeV Ar +, 1.6 MeV Ar + or 2.5 MeV Kr + ions using a dose rate of 1.4 × 10 12 cm −2 s −1 at temperatures between 50°C and 180°C. It has been found that the thickness of the recrystallized layer reaches a maximum value at Tmax = 90°C and 135°C for the Ar + and Kr + implantations, respectively. This means that the crystallization rate deviates from an Arrhenius dependence due to ion beam induced nucleation and growth within the remaining amorphous layer. The size of the crystallites depends on the implantation dose. This nucleation and growth of the crystallites disturbes and at least blocks the interface movement because the remaining surface layer becomes polycrystalline. Choosing temperatures sufficiently below Tmax the thickness of the recrystallized layer increases linearly with the implantation dose indicating that the irradiation temperature is too low for ion induced nucleation. 相似文献
14.
The ion photon emission microscope (IPEM) is a technique developed at Sandia National Laboratories (SNL) to study radiation effects in integrated circuits with high energy, heavy ions, such as those produced by the 88” cyclotron at Lawrence Berkeley National Laboratory (LBNL). In this method, an ion-luminescent film is used to produce photons from the point of ion impact. The photons emitted due to an ion impact are imaged on a position-sensitive detector to determine the location of a single event effect (SEE). Due to stringent resolution, intensity, wavelength, decay time, and radiation tolerance demands, an engineered material with very specific properties is required to act as the luminescent film. The requirements for this material are extensive. It must produce a high enough induced luminescent intensity so at least one photon is detected per ion hit. The emission wavelength must match the sensitivity of the detector used, and the luminescent decay time must be short enough to limit accidental coincidences. In addition, the material must be easy to handle and its luminescent properties must be tolerant to radiation damage. Materials studied for this application include plastic scintillators, GaN and GaN/InGaN quantum well structures, and lanthanide-activated ceramic phosphors. Results from characterization studies on these materials will be presented; including photoluminescence, cathodoluminescence, ion beam induced luminescence, luminescent decay times, and radiation damage. Results indicate that the ceramic phosphors are currently proving to be the ideal material for IPEM investigations. 相似文献
15.
Ion beam induced charge (IBIC) imaging is a powerful technique for quantitative mapping of the charge transport performance of wide bandgap semiconductor materials. In this paper we present results from a study of electron and hole mobility-lifetime product and drift mobility in CdTe:Cl and CdZnTe, which are semiconductor materials used for radiation detector applications. IBIC imaging has been used to produce mobility-lifetime product maps in CdTe:Cl and CdZnTe, revealing the influence of extended defects and tellurium inclusions and assessing the large area response uniformity of the materials. The recent extension of this method in the form of digital time-resolved IBIC is also discussed and time of flight maps are presented which give quantitative images of electron and hole drift mobility. 相似文献
16.
Heavy-Ion Elastic Recoil Detection Analysis (HIERDA) is an analytical technique which has undergone rapid development in the past few years with the availability of high-energy Tandem accelerators for materials science applications. HIERDA has found application in the study of various semiconductor systems, particularly III–V compounds. The technique employs a high-energy heavy-ion analysing beam to knock constituent nuclei from the target material and a time of flight and energy (ToF-E) detector system to extract mass and depth of origin information from these recoiling nuclei. Present work examines the sample damage produced in InP under typical analysis conditions. The depth distribution of damage induced by an 127I analysing beam of varying energy (54–98 MeV) and dose (10 13−2 × 10 14 ions/cm 2) in InP has been examined using RBS channelling, and cross-sectional TEM. 相似文献
17.
Energetic ions beams may be used in various ways to modify and so improve the tribological properties of metals. These methods include: — ion implantation of selected additive species; — ion beam mixing of thin deposited coatings; — ion-beam-assisted deposition of thicker overlay coatings. The first of these techniques has been widely used to modify the electronic properties of semiconductors, but has since been extended for the treatment of all classes of material. Tool steels can be strengthened by the ion implantation of nitrogen or titanium, to produce fine dispersions of hard second-phase precipitates. Solid solution strengthening, by combinations of substitutional and interstitial species, such as yttrium and nitrogen, has also been successful. Both ion beam mixing (IBM) and ion-beam-assisted deposition (IBAD) use a combination of coating and ion bombardment. In the first case, the objective is to intermix the coating and substrate by the aid of radiation-enhanced diffusion. In the latter case, the coating is densified and modified during deposition and the process can be continued in order to build up overlay coatings several μm in thickness. The surface can then be tailored, for instance to provide a hard and adherent ceramic such as silicon nitride, boron nitride or titanium nitride. It is an advantage that all the above processes can be applied at relatively low temperatures, below about 200° C, thereby avoiding distortion of precision components. Ion implantation is also being successfully applied for the reduction of corrosion, especially at high temperatures or in the atmosphere and to explore the mechanisms of oxidation. Ion-assisted coatings, being compact and adherent, provide a more substantial protection against corrosion: silicon nitride and boron nitride are potentially useful in this respect. Examples will be given of the successful application of these methods for the surface modification of metals and alloys, and developments in the equipment now available for industrial application of ion beams will also be reviewed. 相似文献
18.
An ion beam induced charge (IBIC) facility has been added to the existing capabilities of the ANSTO heavy ion microprobe and the results of the first measurements are presented. Silicon on insulator (SOI) diode arrays with microscopic junction sizes have recently been proposed as microdosimeters for hadron therapy. A 20 MeV carbon beam was used to perform IBIC imaging of a 10 μm thick SOI device. 相似文献
19.
Inertial confinement fusion with ion beams requires the efficient delivery of high energy (1 MJ), high power (100 TW) ion beams to a small fusion target. The propagation and focusing of such beams is the subject of this paper. Fundamental constraints on ion beam propagation and focusing are discussed, and ion beam propagation modes are categorized. For light ion fusion (LIF), large currents (2–33 MA) of moderate energy (3–50 MeV) ions of low atomic number (1 A12) must be directed to a target of radius 1 cm. The development of pulsed power ion diodes for LIF is discussed, and the necessity for virtually complete charge neutralization during transport and focusing is emphasized. For near-term LIF experiments, the goal is to produce pellet ignition without the standoff needed for the ultimate reactor application. Ion diodes for use on Sandia National Laboratories Particle Beam Fusion Accelerators PBFA-I (2–4 MV, 1 MJ, 30 TW, operational) and PBFA-II (2–16 MV, 3.5 MJ, 100 TW, scheduled for operation in 1985) are discussed. Ion beam transport from these diodes to the pellet is examined in reference to the power brightness . While values of =2–5 TW/cm 2/sr have been achieved to date, a value of 100 TW/cm 2/sr is needed for breakeven. Research is now directed toward increasing , and means already exist (e.g., scaling to higher voltages, enhanced ion diode current densities, and bunching), which indicate that the required goal should be attainable. For far-term LIF applications, the goal is to produce net energy gain with standoff suitable for a reactor. This may be achieved by ion beam transport in preformed, current-carrying plasma channels. Channel transport research is discussed, including experiments with wire-initiated, wall-initiated, and laser-initiated discharge channels, all of which have demonstrated transport with high efficiency (50–100%). Alternate approaches to LIF are also discussed, including comoving electron beam schemes and a neutralized beam scheme. For heavy ion fusion (HIF), moderate currents (10 kA) of high energy (10 GeV) ions of high atomic number ( A200) must be directed to a target of radius 0.3 cm. Conventional accelerator drivers for HIF are noted. For a baseline HIF reactor system, the optimum transport mode for low charge state beams is ballistic transport in near vacuum (10 –4–10 –3 Torr lithium), although a host of other possibilities exists. Development of transport modes suitable for higher charge state HIF beams may ultimately result in more economical HIF accelerator schemes. Alternate approaches to HIF are also discussed which involve collective effects accelerators. The status of the various ion beam transport and focusing modes for LIF and HIF are summarized, and the directions of future research are indicated. 相似文献
20.
Epitaxial, buried silicon carbide (SiC) layers have been fabricated in (100) and (111) silicon by ion beam synthesis (IBS). In order to study the ion beam induced epitaxial crystallization (IBIEC) of buried SiC layers, the resulting Si/SiC/Si layer systems were amorphized using 2 MeV Si 2+ ion irradiation at 300 K. An unexpected high critical dose for the amorphization of the buried layers is observed. Buried, amorphous SiC layers were irradiated with 800 keV Si + ions at 320 and 600°C, respectively, in order to achieve ion beam induced epitaxial crystallisation. It is demonstrated that IBIEC works well on buried layers and results in epitaxial recrystallization at considerably lower target temperatures than necessary for thermal annealing. The IBIEC process starts from both SiC/Si interfaces and may be accompanied by heterogenous nucleation of poly-SiC as well as interfacial layer-by-layer amorphization, depending on irradiation conditions. The structure of the recrystallized regions in dependence of dose, dose rate, temperature and crystal orientation is presented by means of TEM investigations. 相似文献
|