首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
泡沫金属基高阻尼复合材料的研究进展   总被引:3,自引:0,他引:3  
分析了金属基复合材料和粘弹性材料的阻尼机制,认为金属材料与粘弹性材料复合可开发出高阻尼结构材料。探讨了获得泡沫金属基复合材料的途径,指出了泡沫金属基复合材料是一种具有广阔前景的新型结构功能一体化材料。  相似文献   

2.
高阻尼铝基复合材料的研究   总被引:3,自引:0,他引:3  
刘维镐  朱劲松 《功能材料》2001,32(4):440-442
采用包套挤压法制备了高阻尼6061Al/SiCp/ 石墨混杂金属基复合材料,并对所制备的复合材料的金相组织、力学和阻尼特性进行了初步分析。包套挤压法制备的6061Al/SiCp/石墨混杂金属基复合中增强增阻颗粒分布均匀,其体积分数可精确控制。SiC颗粒作为增强剂能够增大复合材料的强度和刚度,而石墨粉作为增阻剂可以提高复合材料的阻尼特性。试验结果表明,能够应用包套挤压法制备力学性能和阻尼特性符合定要求的新型结构-功能材料-6061Al/SiCp/石墨混杂金属基复合材料。  相似文献   

3.
高阻尼金属基复合材料的发展途径   总被引:8,自引:1,他引:7  
本文在综述传统的高阻尼金属材料和金属基复合材料的阻尼特性基础上,探讨获得高阻尼金属基复合材料的途径,指出采用高阻尼的基体合金、采用高阻尼的增强体以及设计高阻尼的界面层是三种有效方法,为发展密度更小同时又兼有优良机械性能和阻尼功能的新型金属基复合材料提供了可能。  相似文献   

4.
高阻尼金属基复合材料的发展途径   总被引:12,自引:5,他引:7  
在综述传统的高阻尼金属材料和金属基复合材料阻尼的特性的基础上,探讨获得高阻尼性能金属基复合材料的途径。  相似文献   

5.
采用复合铸造法制备了钢/锌复合材料研究其阻尼性能.在拉伸条件下分析其阻尼机制以及拉伸过程中材料的变形行为;在循环条件下测试其阻尼性能与应变幅值的关系;通过衰减实验测试其阻尼性能与材料的几何性质的关系;同时,在三种实验条件下对比钢/锌复合材料和单相钢和锌的阻尼性能.实验结果表明,钢/锌复合材料较钢改善了阻尼性能,较锌则提高了刚度和强度;钢及钢/锌复合材料的阻尼性能具有应变依赖性;复合材料的几何特性对其阻尼性能有一定的影响.  相似文献   

6.
在综述传统高阻尼金属材料和金属基复合材料的阻尼特性的基础上,探讨获得高阻尼性能的金属基复合材料的途径,指出采用高阻尼的基体合金,采用高阻尼的增强物以及设计高阻尼的界面层是效的三种方法,为发展密度更小同时又集结构与阻尼功能于一体的新型材料提供了可能。  相似文献   

7.
镁基材料的阻尼性能研究进展与展望   总被引:1,自引:0,他引:1  
简要介绍了高阻尼镁合金及镁基复合材料的研究进展,叙述了应变振幅、频率、温度、热处理以及合金成分对镁合金阻尼性能的影响,分析了镁基复合材料的阻尼机制及阻尼设计.对高阻尼镁基材料的重要发展方向进行了展望.  相似文献   

8.
结构-阻尼复合材料研究进展   总被引:3,自引:0,他引:3  
航空航天飞行器的高速、轻质和多功能化的发展,精密电子仪器设备的应用及舒适性要求的提高,对传统结构材料的减重和降噪提出了巨大的挑战.近年来,随着纤维增强复合材料的在航空航天领域应用比重的迅速提升,开发兼具高力学性能和高振动阻尼性能的新型结构-阻尼多功能材料也成为研究的热点问题之一.本文在介绍结构-阻尼复合材料阻尼机理的基础上,综述了国内外关于结构阻尼复合材料主要研究内容及研究成果,并讨论了其今后的发展趋势,包括开发新的多功能阻尼插层材料、引入新的阻尼耗能机制、开发多层次结构模型和对阻尼性能和力学性能的多尺度模拟等.  相似文献   

9.
兼具优良吸能特性和高阻尼性能的金属基复合材料有着广泛的应用需求。采用“均混-压制-脱溶-烧结”的四阶段粉末冶金技术制备三维通孔的TiNi多孔材料,并以TiNi多孔材料为基体,基于真空负压渗流技术制备新型Acrylic/TiNi复合材料。内耗测试表明:新型复合材料阻尼能力远高于相应的多孔材料,尤其在室温附近。分析表明,复合材料阻尼能力的提高除与Acrylic的本征高阻尼有关,还与复合材料的多孔TiNi基体和Acrylic之间新增的大量界面阻尼有关。准静态压缩力学性能测试表明:Acrylic/TiNi复合材料可实现和TiNi多孔合金相近的能量吸收效率,这源于复合材料更长且更光滑的压缩平台区。此外,增强相Acrylic的充分渗入,极大提高复合材料的能量吸收能力和屈服强度。压缩形变机制分析表明,复合材料吸能特性的综合提高与压缩过程中TiNi多孔基体和Acrylic填充物之间相互补偿和耦合有关。  相似文献   

10.
兼具优良吸能特性和高阻尼性能的金属基复合材料有着广泛的应用需求。采用“均混-压制-脱溶-烧结”的四阶段粉末冶金技术制备三维通孔的TiNi多孔材料,并以TiNi多孔材料为基体,基于真空负压渗流技术制备新型Acrylic/TiNi复合材料。内耗测试表明:新型复合材料阻尼能力远高于相应的多孔材料,尤其在室温附近。分析表明,复合材料阻尼能力的提高除与Acrylic的本征高阻尼有关,还与复合材料的多孔TiNi基体和Acrylic之间新增的大量界面阻尼有关。准静态压缩力学性能测试表明:Acrylic/TiNi复合材料可实现和TiNi多孔合金相近的能量吸收效率,这源于复合材料更长且更光滑的压缩平台区。此外,增强相Acrylic的充分渗入,极大提高复合材料的能量吸收能力和屈服强度。压缩形变机制分析表明,复合材料吸能特性的综合提高与压缩过程中TiNi多孔基体和Acrylic填充物之间相互补偿和耦合有关。  相似文献   

11.
材料阻尼及阻尼合金的研究现状   总被引:34,自引:4,他引:30  
介绍了材料的阻尼特性及其表征参数,综述了近年来在阻尼性能测试方法,阻尼合金及其阻尼机制等方面的研究现状,并指出了传统阻尼合金应用方面的存在的问题。  相似文献   

12.
铁基阻尼材料是一种具有广阔应用前景的结构-功能一体材料,它具有优良的阻尼性能、综合力学性能和冷热加工性能。本文全面地介绍了铁磁型、孪晶型和复相型三类铁基阻尼材料的阻尼机制、研究和应用现状,并对铁基阻尼材料的发展趋势进行了展望。  相似文献   

13.
复合阻尼结构及其阻尼性能   总被引:7,自引:0,他引:7  
新近出现的几种复合阻尼结构表明,有限各类的阻尼材料,经过简单的物理组合,能满足各种各样的阻尼要求,这类复合阻尼结构正引起科技界的广泛关注。然而,作为一项新技术,它尚缺少相应的理论作指导,因此,对该技术进行研究是必要的和及时的。本文介绍了几种典型的复合阻尼结构,并用振动控制理论对其中的一些结构进行了分析。  相似文献   

14.
测试比较了国内新研和国外两种约束阻尼带的性能,结果表明:国内新研约束阻尼带剥离强度较高,但剥离后在基体上有残留胶;国外约束阻尼带损耗因子较高,阻尼功能温域较宽;随着粘贴层数的增多,国内外约束阻尼带损耗因子均增大,且最大损耗因子对应温度均向低温移动。  相似文献   

15.
文中综述了共固化阻尼复合材料结构近年来的研究成果,包括共固化阻尼复合材料结构的共固化工艺类型、黏弹性阻尼材料的选择范围,并对阻尼薄膜的制作工艺、阻尼薄膜的结构以及处理方式行了概括。此外,对环氧树脂基与双马树脂基共固化阻尼复合材料的实验方法、数值模拟及理论分析做了总结,最后对共固化阻尼复合材料结构存在的不足及未来的发展趋势进行了展望。提出未来应用中需要继续研究解决的问题,以上工作对于深入探索大阻尼高刚度复合材料构件具有一定的参考意义。  相似文献   

16.
熊伟  刘耀宗  邱静  郁殿龙 《功能材料》2005,36(10):1497-1500
介绍了目前主要的几种材料阻尼模型,重点介绍了粘弹性材料阻尼模型.综述了各种模型的特点,适用范围.  相似文献   

17.
填料对阻尼材料和结构的减振效果具有重要的影响,本文以聚氨酯阻尼材料、自由阻尼结构和约束型阻尼结构为研究对象,利用半功率带宽法,考察聚氨酯阻尼材料中加入玻璃鳞片的含量、尺寸对悬臂梁结构复合损耗因子的影响规律,为阻尼材料的改性及阻尼结构设计提供基础理论依据。结果表明,玻璃鳞片在聚氨酯阻尼树脂中呈定向排列,形成多层片层结构。随着玻璃鳞片的加入,通过玻璃鳞片和阻尼树脂之间的界面摩擦可消耗更多的能量,使得复合损耗因子变大,但过高的玻璃鳞片含量会限制其运动,从而导致复合损耗因子降低;当聚氨酯阻尼树脂中加入的玻璃鳞片的尺寸逐渐变大时,阻尼结构的复合损耗因子逐渐变大,且复合损耗因子增大的速度逐渐减小。  相似文献   

18.
综述了聚氨酯阻尼材料的研究进展,介绍了聚氨酯阻尼材料在舰船领域中的应用状况,并对其发展趋势进行了展望。  相似文献   

19.
结构动力有限元分析的阻尼建模及评价   总被引:1,自引:5,他引:1  
淡丹辉  孙利民 《振动与冲击》2007,26(2):121-123,137
提出一种统一的阻尼模型的定量评价方法和评价指标,设计一套用于评价各种阻尼模型的标准测试案例。分析工程结构动力学建模过程中几种已有的阻尼模型和一种新的阻尼模型——单元化阻尼比法,给出其各自的程序实现。通过标准测试案例的数值测试,比较这些阻尼建模法的性能差异。结果表明,阻尼特性单元化比总体考虑的阻尼特性更趋合理,而单元化阻尼比法则在控制结构总体模态阻尼比方面具有优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号