首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production from pasture-based dairy farms can be increased through using N fertilizer to increase pasture grown, increasing stocking rate, importing feeds from off farm (i.e., supplementary feeds, such as cereal silages, grains, or co-product feeds), or through a combination of these strategies. Increased production can improve profitability, provided the marginal cost of the additional milk produced is less than the milk price received. A multiyear production system experiment was established to investigate the biological and economic responses to intensification on pasture-based dairy farms; 7 experimental farmlets were established and managed independently for 3 yr. Paddocks and cows were randomly allocated to farmlet, such that 3 farmlets had stocking rates of 3.35 cows/ha (LSR) and 4 farmlets had stocking rates of 4.41 cows/ha (HSR). Of the LSR farmlets, 1 treatment received no N fertilizer, whereas the other 2 received either 200 or 400 kg of N/ha per year (200N and 400N, respectively). No feed was imported from off-farm for the LSR farmlets. Of the 4 HSR farmlets, 3 treatments received 200N and the fourth treatment received 400N; cows on 2 of the HSR-200N farmlet treatments also received 1.3 or 1.1 t of DM/cow per year of either cracked corn grain or corn silage, respectively. Data were analyzed for consistency of farmlet response over years using mixed models, with year and farmlet as fixed effects and the interaction of farmlet with year as a random effect. The biological data and financial data extracted from a national economic database were used to model the statement of financial performance for the farmlets and determine the economic implications of increasing milk production/cow and per ha (i.e., farm intensification). Applying 200N or 400N increased pasture grown per hectare and milk production per cow and per hectare, whereas increasing stocking rate did not affect pasture grown or milk production per hectare, but reduced milk production per cow. Importing feed in the HSR farmlets increased milk production per cow and per hectare. Marginal milk production responses to additional feed (i.e., either pasture or imported supplementary feed) were between 0.8 and 1.2 kg of milk/kg of DM offered (73 to 97 g of fat and protein/kg of feed DM) and marginal response differences between feeds were explained by metabolizable energy content differences (0.08 kg of milk/MJ of metabolizable energy offered). The marginal milk production response to additional feed was quadratic, with the greatest milk production generated from the initial investment in feed; 119, 99, and 55 g of fat and protein were produced per kilogram of feed DM by reducing the annual feed deficit from 1.6 to 1.0, 1.0 to 0.5, and 0.5 to 0 t of DM, respectively. Economic modeling indicated that the marginal cost of milk produced from pasture resulting from applied N fertilizer was less than the milk price; therefore, strategic use of N fertilizer to increase pasture grown increased farm operating profit per hectare. In comparison, operating profit declined with purchased feed, despite high marginal milk production responses. The results have implications for the strategic direction of grazing dairy farms, particularly in export-oriented industries, where the prices of milk and feed inputs are subject to the considerable volatility of commodity markets.  相似文献   

2.
The global dairy industry needs to reappraise the systems of milk production that are operated at farm level with specific focus on enhancing technical efficiency and competitiveness of the sector. The objective of this study was to quantify the factors associated with costs of production, profitability, and pasture use, and the effects of pasture use on financial performance of dairy farms using an internationally recognized representative database over an 8-yr period (2008 to 2015) on pasture-based systems. To examine the associated effects of several farm system and management variables on specific performance measures, a series of multiple regression models were developed. Factors evaluated included pasture use [kg of dry matter/ha and stocking rate (livestock units/ha)], grazing season length, breeding season length, milk recording, herd size, dairy farm size (ha), farmer age, discussion group membership, proportion of purchased feed, protein %, fat %, kg of milk fat and protein per cow, kg of milk fat and protein per hectare, and capital investment in machinery, livestock, and buildings. Multiple regression analysis demonstrated costs of production per hectare differed by year, geographical location, soil type, level of pasture use, proportion of purchased feed, protein %, kg of fat and protein per cow, dairy farm size, breeding season length, and capital investment in machinery, livestock, and buildings per cow. The results of the analysis revealed that farm net profit per hectare was associated with pasture use per hectare, year, location, soil type, grazing season length, proportion of purchased feed, protein %, kg of fat and protein per cow, dairy farm size, and capital investment in machinery and buildings per cow. Pasture use per hectare was associated with year, location, soil type, stocking rate, dairy farm size, fat %, protein %, kg of fat and protein per cow, farmer age, capital investment in machinery and buildings per cow, breeding season length, and discussion group membership. On average, over the 8-yr period, each additional tonne of pasture dry matter used increased gross profit by €278 and net profit by €173 on dairy farms. Conversely, a 10% increase in the proportion of purchased feed in the diet resulted in a reduction in net profit per hectare by €97 and net profit by €207 per tonne of fat and protein. Results from this study, albeit in a quota limited environment, have demonstrated that the profitability of pasture-based dairy systems is significantly associated with the proportion of pasture used at the farm level, being cognizant of the levels of purchased feed.  相似文献   

3.
Ninety-four cows were randomly allocated to 1 of 5 stocking rates (2.2, 2.7, 3.1, 3.7, and 4.3 cows/ha) in a completely randomized design for 3 years. Herds were seasonal calving, with only minor differences in grazing management to optimize the profitability of each stocking rate (SR). Pasture production and quality data, milk and milk component data, and reproduction data were collected, averaged for SR treatment, and linear and quadratic contrasts on SR were evaluated. In addition, the Wilmink exponential model (yt = a + b × e(0.05t) + c × t) was fitted to milk yield within lactation, and the parameters were averaged by SR treatment and analyzed as above. The median variation explained by the function for individual lactations was 84%. The amount of pasture grown tended to increase, and the quality of the pasture on offer increased linearly with increasing SR, reducing some of the negative impact of SR on the availability of pasture per cow. Milk production per cow declined linearly with increasing SR, although there was a tendency for most production variables to decline quadratically, with the negative effect of SR declining with increasing SR. The effect on milk production per cow was primarily because of a lower peak milk yield and a greater post-peak decline (less persistent milk profile), although a decline in lactation length with increasing SR was responsible for 24% of the effect of SR on milk yield. Milk production per hectare increased linearly with increasing SR, and there was only a small difference (approximately 3%/cow per ha) in the efficiency of converting feed dry matter into milk energy. Stocking rate did not affect reproductive success. The data are consistent with the need for a more robust measure of SR than cows per hectare because farms will differ in the genetic merit of their cows and in the potential to produce pasture. We introduce the concept of a comparative SR, whereby the carrying capacity of the farm is defined by the BW of the cows, the potential of the land to produce pasture, and the amount of supplement purchased (kg of BW/t of feed dry matter). The adoption of such a measure would facilitate the extrapolation and transfer of research findings among systems.  相似文献   

4.
《Journal of dairy science》2023,106(2):1051-1064
The objective of this study was to investigate the effect of increasing stocking rate (SR) and extending grazing season (GS) length on pasture and animal productivity on a marginal, poorly draining soil type. The study was a multiyear (2017 to 2020, inclusive) whole farm systems evaluation with a 2 × 2 factorial experimental arrangement of treatments. The systems evaluated comprised 2 GS lengths, average (AGS; 205 d) and extended (EGS; 270 d), and the 2 whole farm stocking rates were medium (2.5 cows/ha) and high (2.9 cows/ha). We used this study design to create 4 grazing system intensities (500, 600, 700, and 800 cow grazing days per hectare per year). In 2017, cows were randomly allocated to 1 of the 4 whole farm systems precalving and remained on the same treatments for the duration of the study. We found no significant differences in total average annual pasture production [14,133 ± 538 kg of dry matter (DM) per hectare] or sward chemical composition between GS and SR treatments over the 4-yr period, with the exception of average crude protein content, which was lower for EGS (211 g/kg DM) compared with AGS (218 g/kg DM). Grazed pasture production was significantly increased in EGS treatments (+758 kg of DM/ha) compared with AGS (9,917 kg of DM/ha), whereas conserved silage DM production was greater for AGS (+716 kg of DM/ha) compared with EGS (3,583 kg of DM/ha). Neither GS nor SR had a significant effect on daily or cumulative lactation milk and fat plus protein production per cow (5,039 and ±440 kg, respectively). Increasing SR resulted in increased milk fat plus protein yield per hectare based on increased grazed pasture utilization. These results add further credence to the important additive contributions of both extended grazing and SR intensification to achieve high levels of grazed pasture utilization and milk production per hectare while reducing supplementary feed requirements within spring-calving grazing systems.  相似文献   

5.
The objective of the experiment was to quantify the effect of stocking rate (SR) and animal genotype on milk production, dry matter intake (DMI), energy balance, and production efficiency across 2 consecutive grazing seasons (2014 and 2015). A total of 753 records from 177 dairy cows were available for analysis: 68 Holstein-Friesian and 71 Jersey × Holstein-Friesian (JxHF) cows each year of the experiment under a pasture-based seasonal production system. Animals within each breed group were randomly allocated to 1 of 3 whole-farm SR treatments defined in terms of body weight per hectare (kg of body weight/ha): low (1,200 kg of body weight/ha), medium (1,400 kg of body weight/ha), and high (1,600 kg of body weight/ha), and animals remained in the same SR treatments for the duration of the experiment. Individual animal DMI was estimated 3 times per year at grass using the n-alkane technique: March (spring), June (summer), and September (autumn), corresponding to 45, 111, and 209 d in milk, respectively. The effects of SR, animal genotype, season, and their interactions were analyzed using mixed models. Milk production, body weight, and production efficiency per cow decreased significantly as SR increased due to reduced herbage availability per cow and increased grazing severity. As a percentage of body weight, JxHF cows had higher feed conversion efficiency, higher DMI and milk solids (i.e., kg of fat + kg of protein) production, and also required less energy intake to produce 1 kg of milk solids. The increased production efficiency of JxHF cows at a similar body weight per hectare in the current analysis suggests that factors other than individual cow body weight contribute to the improved efficiency within intensive grazing systems. The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based milk production systems at higher SR where feed availability is restricted.  相似文献   

6.
《Journal of dairy science》2021,104(12):12647-12663
Pasture-based dairy systems present the opportunity to increase productivity per hectare through increasing stocking rate and forage utilization. However, in the temperate hot-summer region of South America, different productive strategies are being adopted by farmers. The aim of this study was to quantify the effect of feeding strategy (FS) and cow genotype (G) on individual animal and whole-farm biophysical performance. A design with 2 × 2 levels of intensification aiming to increase home-grown forage utilization and milk output per hectare was evaluated. The experiment was a randomized complete block design with a 2 × 2 factorial arrangement of treatments, combining 2 feeding strategies with varying proportions of grazing in the annual feeding budget [grass fixed (GFix) and grass maximum (GMax)] and 2 Holstein Friesian cow genotypes [New Zealand (NZHF) or North American Holstein Friesian (NAHF)]. The effects of FS, G, and their interaction were analyzed using mixed models. New Zealand Holstein Friesian cows presented lower individual milk yield and higher milk component concentrations, maintained higher average body condition score, and increased body weight (BW) throughout the experiment, while presenting a better reproductive performance compared with the NAHF cows. Although all farmlets were planned at the same stocking rate on a per kilogram of BW basis, the current stocking rate changed as a result of animal performance and grass utilization resulting in NZHF cows achieving greater BW per hectare. The superior stocking rate led to greater milk solids production and feed consumption per hectare for the systems with NZHF cows. The GFix feeding strategy resulted in greater total home-grown forage harvest and conserved forage surplus than GMax. Overall, it was feasible to increase stocking rate and increase milk production per hectare from home-grown forage with differing feeding strategies and Holstein Friesian cow genotypes within grazing systems located in the temperate hot-summer climate region of South America. The interactions reported between FS × G highlight the superior productivity per hectare of NZHF cows within the GMax feeding strategy based on maximizing grazed pasture, which could represent a competitive intensification strategy in terms of cost of production for this region.  相似文献   

7.
《Journal of dairy science》2019,102(12):11523-11535
In theory, a late winter–early spring calving date in temperate grazing systems best matches pasture supply and herd demand, thereby minimizing the need for nonpasture feeds and maximizing profitability. We used a quantitative case study approach to define the effects of season of calving on biophysical and financial performance in a grazing system without the confounding effects of imported feeds (i.e., milk production directly from grazed pasture). A 2-yr production system experiment was established to quantify the effects of changing onset of seasonal calving (i.e., planned start of calving; PSC) from winter (July in the Southern Hemisphere) to spring (October), summer, (January), or autumn (April) on pasture and animal production and profitability. Eighty Holstein-Friesian cows were randomly allocated to 1 of 4 PSC treatments, each of which had a different PSC [mean calving date of January 10 (JAN), April 10 (APR), July 10 (JUL), or October 10 (OCT)]. Data were analyzed for consistency of treatment response over years using ANOVA procedures with year, PSC treatment, and year × PSC treatment interactions as fixed effects. Collated biological data and financial data extracted from a national economic database were used as fixed variables to model the financial performance for the different treatments. A stochastic risk analysis was undertaken, where historical pasture growth and milk price data were used to estimate the probability distributions for stochastic input variables. Gross farm revenue and operating profit per hectare were modeled under 2 scenarios: (A) milk price did not include a premium for milk supplied during the winter, and (B) milk price included a realistic premium for milk supplied in winter. Annual and seasonal pasture growth did not differ between treatments, but the pasture growth (kg of dry matter/ha) and profile of the JUL treatment best matched the lactation nutrient demand profile. In comparison, profiles for JAN, APR, and OCT calving treatments had periods of greater surplus and deficit due to the time of calving and herd demand relative to the pasture growth profile. As a result, the JAN and OCT treatments conserved more pasture as silage and cows consumed a larger proportion of their annual diet as silage. Although the amount of silage conserved and consumed did not differ between the JUL and APR calving treatments, the timing of the silage consumption was different, with silage making up a greater proportion of the diets in the APR treatment 1 to 90 and 91 to 180 d postcalving and being offered to the JUL calving treatment only 271 to 365 d postcalving. As a result of differences in the quantity and proportion of pasture and pasture silage in the lactating diet, the JUL treatment herd tended to produce greater milk, 4% fat-corrected milk, fat, protein, and lactose yields (kg/cow) than the other PSC treatments, which did not differ from each other. Operating expenses per hectare did not differ materially between calving date scenarios, but operating expenses per kilogram of fat-corrected milk and kilogram of fat and protein were 15 to 20% less in the JUL treatment. With or without a realistic winter milk premium, gross farm revenue and operating profit per hectare were greater in the JUL treatment than in the APR treatment, which had greater revenue and profitability than the remaining 2 calving date treatments. In summary, our results indicate that a PSC in late winter is most profitable in a grazing system not importing feed, with or without a realistic price incentive scheme.  相似文献   

8.
Factors that optimize milk production from Northeast United States and New Zealand grazing systems are compared using a linear programming model. The objective function maximized gross margin per hectare of land farmed. The experimental design compared the optimum characteristics of each system over a range of milk prices. The Northeast has a shorter grazing season and lower cropping costs than New Zealand. The optimum pasture area was 49% of the farm for Northeast systems. Gross margins declined rapidly above 55% or below 36% pasture area. The optimum stocking rate was 1.13 cows/ha, or 2.3 cows/ha of pasture. Optimum per cow production was higher for Northeast [7105 kg of fat-corrected milk (FCM)] than New Zealand (5710 kg of FCM) systems. This was related to lower grain relative to milk prices in the Northeast. New Zealand, all-pasture systems gave the lowest cost per unit of milk but also gave the lowest gross margin across all milk price scenarios. The best use of purchased feed in New Zealand systems was to support increased stocking rate rather than per cow production. Optimum grazing management practices were similar for supplemented New Zealand and Northeast systems. All-pasture New Zealand systems are characterized by short lactations and long autumn rotations to transfer pasture in situ for winter feeding. Higher costs per unit of milk produced will be an inevitable consequence of maximizing gross margin at high milk prices in New Zealand systems.  相似文献   

9.
The purpose of this study was to model the effect of 3 divergent strains of Holstein-Friesian cows in 3 pasture-based feed systems on greenhouse gas (GHG) emissions. The 3 strains of Holstein-Friesian compared were high-production North American (HP), high-durability North American (HD), and New Zealand (NZ). The 3 feed systems were a high grass allowance system (MP, control); high stocking rate system (HS); and high concentrate supplementation system (HC). The MP system had an overall stocking rate of 2.47 cows/ha and received 325 kg of dry matter concentrate per cow in early lactation. The HS system had a similar concentrate input to the MP system, but had an overall stocking rate of 2.74 cows/ha. The HC system had a similar overall stocking rate to the MP system, but 1,445 kg of dry matter concentrate was offered per cow. A newly developed integrated economic-GHG farm model was used to evaluate the 9 milk production systems. The GHG model estimates on-farm (emissions arising within the farm's physical boundaries) and production system (incorporating all emissions associated with the production system up to the point milk leaves the farm gate) GHG emissions. Production system GHG emissions were always greater than on-farm emissions, and the ranking of the 9 systems was usually consistent under both methods. The exception was the NZ strain that achieved their lowest GHG emission per unit of product in the HC system when indirect emissions were excluded, but their lowest emission was in the HS system when indirect emissions were included. Generally, the results showed that as cow strain changed from lower (HD and NZ) to higher genetic potential (HP) for milk production, the GHG emission per kilogram of milk solids increased. This was because of a decline in cow fertility in the HP strain that resulted in a higher number of nonproductive animals, leading to a lower total farm milk solids production and an increase in emissions from nonproductive animals. The GHG emission per hectare increased for all strains moving from MP to HS to HC feed systems and this was associated with increases in herd total feed intake. The most profitable combination was the NZ strain in the HS system and this combination resulted in a 12% reduction in production system GHG emission per hectare compared with the NZ strain in the HC system, which produced the highest emissions. This demonstrates that grass-based systems can achieve high profitability and decreased GHG emissions simultaneously.  相似文献   

10.
Choice of stocking rate and breed of cow are 2 strategic decisions that affect the profitability of pasture-based dairy farm businesses. This study sought to analyze the effects of a range of fat and protein prices on the profitability of the Jersey (J) and Holstein-Friesian (HF) breeds at 2 comparative stocking rates (CSR): 80 kg of body weight (BW) per tonne of dry matter (DM) of feed (CSR80), and 100 kg of BW per tonne of DM of feed (CSR100). Data were obtained from a recently published study, and equations constructed to determine the values for fat and protein at which each breed broke even (profit = NZ$0/ha; at time of writing, NZ$1 = US$0.69 or €0.60), returned equal profit, and exceeded the other breed by 1% or 5%. At CSR100 there were few combinations of fat and protein prices for which HF were more profitable than J. At CSR80, J and HF were equally profitable at a fat price of NZ$5.67 ± NZ$0.20 per kilogram, depending on protein price. The study also highlighted the importance of including volume adjustments in milk price calculations when differences in milk composition exist, as the fat price at which the profitability of HF and J were equal was NZ$1.23/kg lower when volume adjustments were included. The recent increase in the value of fat relative to protein favors J. Farmers should consider the medium- to long-term outlook of fat price when evaluating breed choice for their farm system.  相似文献   

11.
The objectives of this study were to describe the relationships between milk urea concentrations and nutritional management, production, and economic variables in commercial dairy herds. Dairy Herd Improvement (DHI) test-day milk urea data, production data, and information on ration nutrient composition and feeding management programs were collected over a 13-mo period from 53 commercial Ontario dairy herds. Economic variables included gross milk revenue, feed costs, and income over feed costs. Herd mean milk urea concentrations had a positive relationship with dietary levels of crude protein (CP), rumen degradable protein (RDP), and rumen undegradable protein (RUP) and a negative relationship with dietary levels of nonfiber carbohydrates (NFC), forage:concentrate (F:C) ratio, NFC:CP ratio, and NFC:RDP ratio. These findings are consistent with experimental studies that used chemical methods of milk urea analysis. Herd mean milk urea concentration was not associated with feeding management (e.g., total mixed rations, component feeding, feeding frequency, or synchrony of forage and concentrate feeding). Herd mean milk urea was not associated with either mean milk yield or linear score. Herd mean milk urea had a positive relationship with feed costs per cow per day but was not associated with gross milk revenue per cow per day. Herds with a high mean milk urea concentration tended to have lower income over feed costs per cow per day. High herd mean milk urea concentrations were associated with higher feed costs per kilogram of milk fat but lower gross milk revenue and lower income over feed costs per kilogram of milk fat. The results of this study demonstrate that DHI milk urea measurements produced by an infrared test method offer a useful tool for monitoring the efficiency of nitrogen utilization in commercial dairy herds. The results also suggest that diets may be balanced to achieve greater efficiency of nitrogen utilization, lower milk urea concentrations, and lower feed costs, while still achieving high milk production. This may lead to improved income over feed costs.  相似文献   

12.
The objective of this study was to compare the biological and economic efficiencies of 2 likely future pasture-based systems of milk production differing in overall stocking rate and concentrate supplementation level on a wetland drumlin soil in the Border Midlands Western region of Ireland. Physical performance data were obtained from a 3-yr systems comparison at Ballyhaise College, Co. Cavan, comparing 2 production systems: a high grass (HG) system (578 kg of concentrate/cow at 2.45 livestock units per hectare) and a high intensity (HI) system (1,365 kg of concentrate/cow at 2.92 livestock units/ha). Animal production data were analyzed using a mixed model, with feed system, year, and parity included as fixed effects in the final model. Feed system had a significant effect on all yield variables with higher yields in the HI system. Production system had no significant influence on reproductive performance. The Moorepark Dairy Systems Model, a stochastic budgetary simulation model, was used to simulate a model farm integrating biological data from each feed system to identify the economic effect of each system at 3 future milk prices of 22, 27, and 33 euro cents per liter (€c/L). Two economic scenarios were investigated within the model: scenario 1 (S1) assumed fixed cow numbers (n=55 cows) and scenario 2 (S2) assumed fixed land area (n=40 ha). At a milk price of 27 or 33 €c/L, profit per cow, per kilogram of milk solids, and per hectare were similar for HG and HI in S1 and higher for HI in S2. At a milk price of 22 €c/L, all systems were unprofitable, with increased losses realized in the HI system (both S1 and S2) compared with the HG system. Pasture-based systems of milk production in the northern region of Ireland are capable of highly efficient and profitable milk production. Moreover, the efficacy of increased supplementation to remove the constraints of pasture seasonality will depend on the cost of supplementation and the price paid for additional milk produced.  相似文献   

13.
The intensification process of the livestock sector has been characterized in recent decades by increasing output of product per hectare, increasing stocking rate, including more concentrated feed in the diet, and improving the genetic merit of the breeds. In dairy farming, the effects of intensification on the environmental impact of milk production are not completely clarified. The aim of the current study was to assess the environmental impacts of dairy production by a life cycle approach and to identify relations between farming intensity and environmental performances expressed on milk and land units. A group of 28 dairy farms located in northern Italy was involved in the study; data collected during personal interviews of farmers were analyzed to estimate emissions (global warming potential, acidification, and eutrophication potentials) and nonrenewable source consumption (energy and land use). The environmental impacts of milk production obtained from the life cycle assessment were similar to those of other recent studies and showed high variability among the farms. From a cluster analysis, 3 groups of farms were identified, characterized by different levels of production intensity. Clusters of farms showed similar environmental performances on product basis, despite important differences in terms of intensification level, management, and structural characteristics. Our study pointed out that, from a product perspective, the most environmentally friendly way to produce milk is not clearly identifiable. However, the principal component analysis showed that some characteristics related to farming intensification, such as milk production per cow, dairy efficiency, and stocking density, were negatively related to the impacts per kilogram of product, suggesting a role of these factors in the mitigation strategy of environmental burden of milk production on a global scale. Considering the environmental burden on a local perspective, the impacts per hectare were positively associated with the intensification level.  相似文献   

14.
The objectives of this paper were to use a linear programming model previously described to evaluate different alternatives for reducing excess nutrients that may influence water quality on a case study farm (300 lactating cows on 430 ha of cropland growing alfalfa, grass, and corn). Several alternatives perceived to influence farm nutrient balance were evaluated for their potential to reduce N and P mass balance. Dividing lactating cow diets into three groups according to their level of milk production versus a one-group total mixed ration decreased mass balance (tonne/yr) from 51.7 to 44.7 for N, from 6.7 to 6.1 for P and from 16.2 to 14.8 for K with little influence on return over feed costs. Increasing forage quality (lower neutral detergent fiber and higher crude protein) did not improve N balance because of the increased N fixation from the air to the soil, but it increased returns over feed costs by $31,385. Improving yields to the maximum potential for the farm reduced mass balance by 29, 51, and 100% for N, P, and K, respectively, and increased returns over feed costs by $70,579. Changing the crop hectare proportions to more corn and less alfalfa reduced N and K balances by 19 and 29%, respectively, and increased returns over feed costs $39,383. Increasing annual milk production 10% by increasing milk production per head 10% compared with increasing animal numbers at the current average milk production per cow until total milk increased 10% gave $34,132 more return over feed costs with less N, P, and K retained on the farm.  相似文献   

15.
The objective of this experiment was to evaluate the effect of stocking rate (SR) and animal genotype (BR) on milk production, body weight (BW), and body condition score (BCS) within intensive pasture-based systems. A total of 533 lactation records, from 246 elite genetic merit dairy cows were available for analysis; 68 Holstein-Friesian (HF) and 71 Jersey × Holstein-Friesian (JxHF) crossbred cows in each of 4 consecutive years (2013–2016, inclusive). Cows from each BR were randomly allocated to 1 of 3 whole-farm comparative SR treatments, low (LSR; 1,200 kg of BW/ha), medium (MSR; 1,400 kg of BW/ha), and high (HSR; 1,600 kg of BW/ha), and remained in the same SR treatments for the duration of the experiment. The effects of SR, BR, and their interaction on milk production/cow and per hectare, BW, BCS, and grazing characteristics were analyzed. Total pasture utilization per hectare consumed in the form of grazed pasture increased linearly as SR increased: least in LSR (10,237 kg of dry matter/ha), intermediate in MSR (11,016 kg of dry matter/ha), and greatest in HSR (11,809 kg of dry matter/ha). Milk and milk solids (MS) yield per hectare was greatest for HSR (15,942 and 1,354 kg, respectively), intermediate for MSR (14,191 and 1,220 kg, respectively), and least for LSR (13,186 and 1,139 kg, respectively) with similar trends evident for fat, protein, and lactose yield/ha. At higher SR (MSR and HSR), MS yield per kg of BW per ha was reduced (0.85 and 0.82 kg of MS/kg of BW, respectively) compared with LSR (0.93 kg of MS/kg of BW/ha). Holstein-Friesian cows achieved fewer grazing days per hectare (?37 d), and produced more milk (+561 kg/ha) but less fat plus protein (?57 kg/ha) compared with JxHF cows; the JxHF cows were lighter. At similar BW per hectare, JxHF cows produced more fat plus protein/ha during the grazing season at low (1,164 vs. 1,113 kg), medium (1,254 vs. 1,185 kg), and high (1,327 vs. 1,380 kg) SR. In addition, JxHF cows produced more fat plus protein per kg of BW/ha (0.90 kg) compared with HF cows (0.84 kg). The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based production systems.  相似文献   

16.
Grazed grass is the cheapest feed available for dairy cows in temperate regions; thus, to maximize profits, dairy farmers must optimize the use of this high-quality feed. Previous research has defined the benefits of including white clover (Trifolium repens L.) in grass swards for milk production, usually at reduced nitrogen usage and stocking rate. The aim of this study was to quantify the responses in milk production of dairy cows grazing tetraploid or diploid perennial ryegrass (Lolium perenne L.; PRG) sown with and without white clover but without reducing stocking rate or nitrogen usage. We compared 4 grazing treatments in this study: tetraploid PRG-only swards, diploid PRG-only swards, tetraploid with white clover swards, and diploid with white clover swards. Thirty cows were assigned to each treatment, and swards were rotationally grazed at a farm-level stocking rate of 2.75 cows/ha and a nitrogen fertilizer rate of 250 kg/ha annually. Sward white clover content was 23.6 and 22.6% for tetraploid with white clover swards and diploid with white clover swards, respectively. Milk production did not differ between the 2 ploidies during this 4-yr study, but cows grazing the PRG-white clover treatments had significantly greater milk yields (+596 kg/cow per year) and milk solid yields (+48 kg/cow per year) compared with cows grazing the PRG-only treatments. The PRG-white clover swards also produced 1,205 kg of DM/ha per year more herbage, which was available for conserving and buffer feeding in spring when these swards were less productive than PRG-only swards. Although white clover is generally combined with reduced nitrogen fertilizer use, this study provides evidence that including white clover in either tetraploid or diploid PRG swards, combined with high levels of nitrogen fertilizer, can effectively increase milk production per cow and per hectare.  相似文献   

17.
A deterministic model was developed to evaluate the concurrent effects of selection and crossbreeding on the rate of genetic gain and productivity of New Zealand dairy cattle over 25 yr. Selection was based on an index, which included estimated breeding values for mature cow live weight and lactation yields of milk, fat, and protein. Mating strategies involving Holstein-Friesian, Jersey, and Ayrshire breeds were evaluated. Effects of heterosis and age were included to calculate live weight and yields of milk, fat, and protein per cow. Feed requirements were estimated for maintenance, lactation, and pregnancy and for replacement heifers. Stocking rate was calculated by assuming 12,000 kg of dry matter annually utilized per hectare. Upgrading to either Jersey or Holstein-Friesian increased the number of potential bull mothers and resulted in genetic gains of 0.27 genetic standard deviations/yr for both options. Rotational crossbreeding of Holstein-Friesian x Jersey decreased the number of potential bull mothers and resulted in a genetic gain of 0.24 genetic standard deviations/yr. Upgrading to Jersey resulted in the least increase in milk (5%) and the greatest increase in fat (16%) and protein (27%) per hectare with a small decrease in stocking rate (0.4%). Upgrading to Holstein-Friesian reduced the stocking rate by 11% and increased production of milk, fat, and protein per hectare by 10, 8, and 21%, respectively. Rotational crossbreeding of Holstein-Friesian x Jersey resulted in greater production per hectare than the intermediate production between upgrading to Jersey and upgrading to Holstein-Friesian. Crossbreeding can be used in combination with selection to exploit the effects of heterosis while maintaining genetic diversity to cover changes in market conditions.  相似文献   

18.
The aims of the present study were to provide a portrait of the techno-economic status of dairy herds in Minas Gerais, Brazil, particularly with respect to bulk-tank somatic cell count (BTSCC) data, and to examine the herd-level associations of BTSCC with various economic performance indicators (EPI). Data from 543 herds, 1,052 herd-year records in total, spread over 3 years (2015–2017), from the South and Southwest mesoregions of Minas Gerais State were provided by the Brazilian Support Agency to Micro and Small Companies Division Minas Gerais (SEBRAE). Herds had an average of 82 lactating cows per herd, milk yield of 17 L/cow per day, and availability of financial information via routine monthly economic surveys. The EPI data (revenue, gross margin, GM; net margin, NM; profit; break-even point; and operational profitability) of each herd was measured monthly by SEBRAE personnel, and herd-year averages of all variables were computed. Bulk-tank data (SCC, total bacterial count, content of crude protein and fat) taken by producers or dairy processors were recorded by SEBRAE personal; and corresponding herd-year averages were calculated and included in the SEBRAE database. There were 209 selected herds, which passed all edit checks, and which had data for all 3 years. The EPI (all expressed on a per-cow basis, $/cow per year) were analyzed, including the effects of region, year, log (ln) BTSCC, production level, and herd size, together with the random effect of herd nested within region. A high proportion of herds (94.6%) presented data records (herd-years) with an average BTSCC > 200 × 103 cells/mL: 37.8% of herd-year records had BTSCC between >200 and ≤400, 14.5% with BTSCC between >400 and ≤500, 25% with BTSCC between >500 and ≤750, and 17.3% with BTSCC >750. For each unit increase in ln BTSCC, revenue declined by $228.5/cow per year, GM by $155.6/cow per year, and profit by $138.6/cow per year. Herds with cows of lower production (<14 kg/d) presented lower GM ($286.8/cow per year) compared with herds containing cows producing ≥14 kg/d (≥14 and <19 kg/d = $446.5, and ≥19 kg/d = $601.9). The small-scale milk producers (<39 lactating cows) presented lower revenue ($1,914.9/cow per year) and GM ($274.5/cow per year) and consequently a negative profit (?$224.1/cow per year) compared with other herd size categories (≥39 lactating cows). The reduction in milk yield was 641 L/cow per lactation for each unit increase in ln BTSCC; this represented 9.4% of the milk yield per lactation, assuming an average milk production of 6,843.3 L/cow per lactation of cows from herds that had BTSCC ≤ 200 × 103 cells/mL. Consequently, we found a negative association of BTSCC with profit; profit declining from $227.0 to ?53.1/cow per year when the BTSCC increased from 100 to 750 × 103 cell/mL. In short, the lower the BTSCC, the greater the revenue, GM and NM, profit, and operational profitability of the herds. The reduction of milk yield was the main factor associated with higher BTSCC.  相似文献   

19.
The objective of this study was to estimate the cost of metritis in dairy herds. Data from 11,733 dairy cows from 16 different farms located in 4 different regions of the United States were compiled for up to 305 d in milk, and 11,581 cows (2,907 with and 8,674 without metritis) were used for this study. Metritis was defined as fetid, watery, red-brownish vaginal discharge that occurs ≤21 d in milk. Continuous outcomes such as 305-d milk production, milk sales ($/cow), cow sales ($/cow), metritis treatment costs ($/cow), replacement costs ($/cow), reproduction costs ($/cow), feeding costs ($/cow), and gross profit per cow ($/cow) were analyzed using mixed effect models using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Gross profit was also compared using the Kruskal–Wallis test. Dichotomous outcomes such as pregnant and culling by 305 d in milk were analyzed using the GLIMMIX procedure of SAS. Time to pregnancy and culling were analyzed using the PHREG procedure of SAS. Models included the fixed effects of metritis, parity, and the interaction between metritis and parity, and farm as the random effect. Variables were considered significant when P ≤ 0.05. Metritis cost was calculated by subtracting the gross profit of cows with metritis from the gross profit of cows without metritis. A stochastic analysis was performed with 10,000 iterations using the observed results from each group. Milk yield and proportion of cows pregnant were lesser for cows with metritis than for cows without metritis, whereas the proportion of cows leaving the herd was greater for cows with metritis than for cows without metritis. Milk sales, feeding costs, residual cow value, and gross profit were lesser for cows with metritis than for cows without metritis. Cow sales and replacement costs were greater for cows with metritis than for cows without metritis. The mean cost of metritis from the study herds was $511 and the median was $398. The stochastic analysis showed that the mean cost of a case of metritis was $513, with 95% of the scenarios ranging from $240 to $884, and that milk price, treatment cost, replacement cost, and feed cost explained 59%, 19%, 12%, and 7%, respectively, of the total variation in cash flow differences. In conclusion, metritis caused large economic losses to dairy herds by decreasing milk production, reproduction, and survival in the herd.  相似文献   

20.
Pure Holstein (HO) cows (n=416) were compared with Normande (NO) × HO (n=251), Montbéliarde (MO) × HO (n=503), and Scandinavian Red (SR) × HO (n=321) crossbred cows for survival, lifetime production, and profitability in 6 commercial herds in California. The SR crossbred cows were sired by both Swedish Red and Norwegian Red bulls. Cows calved from June 2002 to January 2009. For analysis of survival to subsequent calvings, lifetime production, and profitability, data were restricted to 3 of 6 herds because they had at least 20 cows in each of the breed groups. All cows had the opportunity to calve at least 4 times. Best prediction, which is used by USDA for national genetic evaluations in the United States, was used to determine lifetime production to 4 yr (1,461 d) in the herd after first calving from test-day observations. Production and survival were estimated after 4 yr to calculate lifetime profit. A profit function was defined to include revenues and expenses for milk, fat, protein, and other solids production; somatic cell count; reproduction; feed intake; calf value; salvage value; dead cow disposal; and fixed cost. The NO × HO (1.2%), MO × HO (2.0%), and SR × HO cows (1.6%) had significantly fewer deaths than did pure HO cows (5.3%) during the first 305 d of first lactation. All crossbred groups had significantly more cows that calved a second, third, and fourth time, and had mean survival that was 300 to 400 d longer than did pure HO cows. The NO × HO, MO × HO, and SR × HO cows had significantly higher lifetime fat plus protein production than did pure HO cows up to 1,461 d after first calving. For profitability (ignoring possible differences in health costs), NO × HO cows had 26% greater projected lifetime profit per cow, but 6.7% less profit per cow-day, than did pure HO cows. On the other hand, MO × HO and SR × HO cows had 50 to 44%, respectively, more projected lifetime profit per cow and 5.3 to 3.6%, respectively, more projected profit per cow-day than did pure HO cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号