首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study examined the localization of cellular glutathione peroxidase (GPx1) and extracellular glutathione peroxidase (GPx3) in lactating mammary tissue and in primary cultures of bovine mammary epithelial cells (BMEC). The effect of selenium as selenomethionine (SeMet) on the growth and viability of BMEC and GPx protein expression and activity were also studied. Single mammary epithelial cells were recovered by serial collagenase/hyaluronidase digestion from lactating bovine mammary tissue and cultured in a low-serum collagen gel system enriched with lactogenic hormones and 0, 10, 20, or 50 nM SeMet. Positive immunostaining with anti-cytokeratin and bovine anti-casein confirmed the epithelial nature and differentiated state of BMEC. Addition of SeMet to media facilitated rapid confluence of BMEC and formation of dome structures. Immunohistochemical and immunocytochemical staining revealed that both GPx1 and GPx3 are synthesized by BMEC and localized in the cytoplasm and nucleus. Up to 50 nM SeMet linearly increased BMEC number and viability over 5 d of culture. Bovine mammary epithelial cells cultured in SeMet-supplemented medium also exhibited markedly elevated GPx activity and linear increases in abundance of GPx1 and GPx3 proteins. It is apparent that SeMet degradation to release Se for synthesis of selenoproteins is carried out by BMEC. Results indicate that bovine mammary epithelial cells express GPx1 and GPx3 in vivo and in vitro; SeMet enhances expression of these selenoproteins in vitro and the growth and viability of BMEC.  相似文献   

2.
3.
4.
The installation of oxidative process arises from an imbalance between oxidants and antioxidants compounds, in favor of excessive generation of free radicals. This process can affect cellular components, like endoplasmic reticulum (ER). The ER is extremely sensitive to changes in homeostasis, where, on different stimuli, may result in adaptation to survival or induction of apoptosis (unfolded protein response, “UPR” pathway). The oxidative damage caused by endogenous or exogenous agents or a dysregulation of the UPR pathway can lead to adverse conditions, whose chronicity has important implications for the etiology of chronic diseases, including cancer. Therefore, it becomes important to search for chemoprotective agents aiming their role in preventive medicine. Between these substances, selenium’s antioxidant activity seems to be effective in treating diseases which have the oxidative stress as its development. We evaluated the modulating action of l-(+)-selenomethionine (SeMet) in HepG2 cells against cellular stress induced by H2O2 through MTT assay, comet assay, and gene expression by qRT-PCR of genes related to oxidative stress, UPR pathway, and apoptosis. In MTT assay, the lower concentrations of SeMet showed a cytoprotective action against the damage caused by H2O2. Likewise, it was verified in the comet assay that the concentration of 50 ng/mL reduced the genotoxic damage caused by H2O2. SeMet at 50 ng/mL regulated the genes tested in the qRT-PCR, showing an antiapoptotic and antioxidant effect. These results suggest that SeMet positively modulates the genes of oxidative stress and ER, leading to a chemoprotective and antioxidant effect, becoming an alternative in preventive medicine.  相似文献   

5.
Curcumin has been traditionally used in China and India for food and medicinal purposes. It has been shown to possess potent antioxidative activity both in vitro and in vivo. In the present study, the neuroprotective effects and the potential mechanisms of curcumin against H2O2-induced oxidative stress in mouse neuroblastoma Neuro-2A cells were investigated. Treatment with curcumin at 20 and 25 μg/mL for 1 h prior to H2O2 exposure significantly attenuated cell viability loss, reduced apoptosis, suppressed the elevation of intracellular reactive oxygen species (ROS) and calcium levels, and stabilised mitochondrial membrane potential. Furthermore, curcumin could block H2O2-mediated degradation of the protein IκBα and subsequent activation of nuclear factor κB, thus inhibiting the expression of its target gene cyclooxygenase 2. These results indicate that curcumin has potential protective effects against H2O2-induced oxidative stress in neuron cells, which might make curcumin a suitable therapeutic agent for prevention and treatment of neurodegenerative diseases associated with oxidative stress.  相似文献   

6.
The experiment was conducted to determine the role of nuclear factor (erythroid-derived 2)-like factor 2 (NFE2L2, formerly Nrf2) antioxidant response element (ARE) pathway in protecting bovine mammary epithelial cells (BMEC) against H2O2-induced oxidative stress injury. An NFE2L2 small interfering RNA (siRNA) interference or a pCMV6-XL5-NFE2L2 plasmid fragment was transfected to independently downregulate or upregulate expression of NFE2L2. Isolated BMEC in triplicate were exposed to H2O2 (600 μM) for 6 h to induce oxidative stress before transient transfection with scrambled siRNA, NFE2L2-siRNA, pCMV6-XL5, and pCMV6-XL5-NFE2L2. Cell proliferation, apoptosis and necrosis rates, antioxidant enzyme activities, reactive oxygen species (ROS) and malondialdehyde (MDA) production, protein and mRNA expression of NFE2L2 and downstream target genes, and fluorescence activity of ARE were measured. The results revealed that compared with the control, BMEC transfected with NFE2L2-siRNA3 had proliferation rates that were 9 or 65% lower without or with H2O2, respectively. These cells also had apoptosis and necrosis rates that were 27 and 3.5 times greater with H2O2 compared with the control group, respectively. In contrast, transfected pCMV6-XL5-NFE2L2 had proliferation rates that were 64.3% greater or 17% lower without or with H2O2 compared with the control group, respectively. Apoptosis rates were 1.8 times lower with H2O2 compared with the control. In addition, compared with the control, production of ROS and MDA and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione-S-transferase (GST) increased markedly in cells transfected with pCMV6-XL5-NFE2L2 and without H2O2. However, compared with the control, production of ROS and MDA and activity of CAT and GSH-Px increased markedly, whereas activities of SOD and GST decreased in cells transfected with pCMV6-XL5-NFE2L2 and incubated with H2O2. Compared with the control, cells transfected with NFE2L2-siRNA3 with or without H2O2 had lower production of ROS and MDA and activity of SOD, CAT, GSH-Px, and GST. Cells transfected with pCMV6-XL5-NFE2L2 with or without H2O2 had markedly higher protein and mRNA expression of NFE2L2, heme oxygenase-1 (HMOX-1), NADH quinone oxidoreductase 1, glutamate cysteine ligase catalytic subunit, and glutamyl cystine ligase modulatory subunit compared with the control incubations. Cells transfected with NFE2L2-siRNA3 without or with H2O2 had markedly lower protein and mRNA expression of NFE2L2, HMOX-1, NADH quinone oxidoreductase 1, glutamyl cystine ligase modulatory subunit, and glutamate-cysteine ligase catalytic subunit compared with the control incubations. In addition, expression of HMOX-1 was 5.3-fold greater with H2O2 compared with the control. Overall, results indicate that NFE2L2 plays an important role in the NFE2L2-ARE pathway via the control of HMOX-1. The relevant mechanisms in vivo merit further study.  相似文献   

7.
《Journal of dairy science》2022,105(12):10007-10019
Amino acids are primarily absorbed in the ruminant small intestine, and the small intestine is a target organ prone to oxidative stress, causing intestinal disfunction. Previous study suggested that l-Trp could benefit intestinal function and production performance. This study aimed to explore the effects of l-Trp on hydrogen peroxide (H2O2)-induced oxidative injury in bovine intestinal epithelial cells (BIEC) and the potential mechanism. The effects of l-Trp on cell apoptosis, antioxidative capacity, AA transporters, and the mammalian target of rapamycin (mTOR) signaling pathway were evaluated in BIEC treated with 0.8 mM l-Trp for 2 hours combined with or without H2O2 induction. In addition, to explore whether the effects of 0.8 mM l-Trp on oxidative stress were related to mTOR, an mTOR-specific inhibitor was used. The percentage of apoptosis was measured using flow cytometry. The relative gene abundance and protein expression in BIEC were determined using real-time PCR and Western blot assay, respectively. Results showed l-Trp at 0.4 and 0.8 mM enhanced the cell viability, and it was inhibited by l-Trp at 6.4 mM. l-Tryptophan at 0.4, 0.8, and 1.6 mM remarkably decreased the percentage of apoptosis and enhanced antioxidative capacity in H2O2-mediated BIEC. Moreover, l-Trp at 0.8 mM increased the relative gene abundance and protein expression of antioxidative enzymes and AA transporters, and the mTOR signaling pathway. The mTOR inhibitor lowered the protein expression of large neutral amino acid transporter 1, but the inhibition of mTOR did not alter the activities of catalase and superoxide dismutase or protein expression of alanine-serine-cysteine transporter 2 with or without H2O2 induction. l-Tryptophan increased catalase and superoxide dismutase activities in H2O2-mediated BIEC, although not with a present mTOR inhibitor. l-Tryptophan increased the protein expression of large neutral amino acid transporter 1 and alanine-serine-cysteine transporter 2 in H2O2-mediated BIEC with or without the presence of an mTOR inhibitor. The present work suggested that l-Trp supplementation could alleviate oxidative injury in BIEC by promoting antioxidative capacity and inhibiting apoptosis, and the mTOR signal played vital roles in the alleviation.  相似文献   

8.
Lim  Sae-Rom  Go  Eun-Bi  Go  Geon  Shin  Han-Seung  Sung  Jung-Suk 《Food science and biotechnology》2013,22(1):197-204

This study was conducted to define the antioxidant properties and cytoprotective mechanisms of sea buckthorn fruit extract (SFE) against cellular oxidative stress in mouse embryonic fibroblast (MEF) cells. Cell viability of MEF cells damaged by H2O2 was significantly increased by addition of SFE in a concentration dependent manner. Cytoprotective effect of SFE against oxidative damage was observed to be co-related with regulation of cell cycle progression. Induction of cell cycle arrest in G2/ M checkpoint was mediated by oxidative stress, but significantly reduced by treatment of MEF cells with SFE. Analysis of key regulatory proteins involved in G2/M arrest showed that SFE treatment leads to down-regulation of both phosphorylated Chk1 and cyclin B, which play important roles in cell cycle arrest of oxidatively damaged cells. Effect of SFE on apoptosis was evaluated by morphological and flow cytometric analysis. Apoptotic cell accumulation occurred by H2O2 treatment was decreased by co-treatment of MEF cells with SFE. Early apoptotic process involved in DNA fragmentation and condensation was also inhibited by additional treatment with SFE. Overall results suggest that cytoprotective effect of SFE is mediated by effective radical scavenging activity as well as altered cell cycle regulation which prevent apoptotic cell death induced by cellular oxidative stress.

  相似文献   

9.
《Journal of dairy science》2017,100(5):4025-4037
The objective of this study was to investigate the direct effects of feed supplements niacin and betaine on the heat shock responses of in vitro cultured cells derived from bovine mammary and uterine tissues. First, we determined the mRNA expression profiles of the niacin receptor (GPR109A) in bovine tissues (liver, skin, uterus, udder, and ovary) and in cells derived from bovine mammary epithelium (mammary alveolar cells, MAC-T; bovine mammary epithelial cells, BMEC) and endometrium (bovine endometrial cells, BEND). We found that GPR109A was distributed in all examined tissues and cells, and the highest expression was in cells from skin and udder. Second, we evaluated the effects of niacin treatment on the mRNA abundance of heat shock proteins 70 and 27 (HSP70 and HSP27) in MAC-T, BMEC, and BEND under thermoneutral conditions and heat stress, and whether these effects were associated with alterations in the mRNA expression of prostaglandin E2 synthesis–related genes, including cyclooxygenase 1 and 2 (COX-1 and COX-2) and microsomal prostaglandin E synthase 1 and 2 (mPGES-1 and mPGES-2). Quantitative PCR data indicated that niacin suppressed HSP70 mRNA expression in BMEC and both HSP70 and HSP27 in BEND under thermoneutral conditions. Only COX-2 expression was downregulated by niacin in BMEC; other prostaglandin E2 synthesis–related genes stayed unaltered in BMEC and BEND. The mRNA abundance of HSP70, COX-1, COX-2, and mPGES-1 were elevated in niacin-treated MAC-T. During heat stress, niacin increased mRNA levels of HSP70 and HSP27 in MAC-T and HSP27 in BEND, but decreased HSP70 in BMEC. Although mPGES-2 was stimulated by niacin in BEND, the mRNA expression of prostaglandin E2 synthesis–related genes were consistent with neither HSP70 nor HSP27 expression patterns in niacin-treated BMEC and MAC-T. These data suggest that the effects of niacin on heat shock protein expression and prostaglandin E2 synthesis were not well coupled in these cells. Finally, we tested the effects of betaine treatment on viability and apoptosis in BMEC. Compared with control cultures, viability was higher in betaine-treated cells at 8 h under thermoneutral conditions and at 16 h in heat stress, and apoptotic rates were lower at 8 h. Our data support a dual role for niacin in regulating heat shock protein expression in normal and heat-shocked cells derived from mammary and uterine tissues, and positive effects of betaine in regulating mammary cell viability during heat stress.  相似文献   

10.
This study was conducted to evaluate the cytoprotective activity of roasted coffee residues (RCRs) extract on mouse embryonic fibroblast (MEF) cells. RCRs originated from Colombia and Honduras are relatively nontoxic to cell growth and even stimulate cell proliferation. Colombian RCRs showed most efficient protective effects on MEF cells against oxidative damage induced by H2O2 compared among the extracts prepared under the same roasting time. The most significant radical scavenging activity was measured in RCR with roasting time of 8.5 min. Phenolic and nonphenolic compounds in RCRs were chlorogenic acid, caffeine, caffeic acid, nicotinic acid, trigonelline, and 5-(hydroxymethyl)furfuralolehyde. Effect of Colombian RCRs on apoptosis occurred by oxidative damage was evaluated by morphological and flow cytometric analysis. Apoptotic cell accumulation was decreased by cotreatment of MEF cells with Colombian RCRs. These results suggested that antioxidant potency of RCRs suppresses the cytotoxicity which is induced by H2O2 and has a protective effect on MEF cell against oxidative stress.  相似文献   

11.
This study was conducted to evaluate the cytoprotective activity of lotus (Nelumbo nucifera Gaertner) seed extract (LSE) on mouse embryonic fibroblast (MEF) cells. The DPPH free radical scavenging activities of LSE increased in a concentration dependent manner. The cells, damaged by oxidative stress, decreased their viability following increasing concentration of H2O2, but the cotreatment of ethyl acetate fraction of LSE and H2O2 resulted in an increase in cell growth, by about 25%, compared to the cells treated with H2O2. The ethyl acetate fraction of LSE inhibited the cytotoxicity induced by H2O2 in a concentration dependent manner. The treatment of the n-butanol fraction of LSE on MEF cell was also examined by analyzing the DNA content and apoptotic rate, using flow cytometry. The oxidative damage to the cells, measured by apoptotic and necrotic cell accumulation, was similar with the addition of the ethyl acetate fraction of LSE to H2O2. These results suggest that LSE inhibited the cytotoxicity which is induced by H2O2, and has a protective effect on MEF cell against oxidative stress.  相似文献   

12.
In this study, the cytoprotective effect of fucoxanthin, which was isolated from Sargassum siliquastrum, against oxidative stress induced DNA damage was investigated. Fucoxanthin, a kind of carotenoid, was pretreated to the medium and the protective effect was evaluated via 2′,7′-dichlorodihydrofluorescein diacetate, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide, and comet assays. Intracellular reactive oxygen species were over produced by addition of hydrogen peroxide (H2O2), but the production was significantly reduced by the treatment with fucoxanthin. The fucoxanthin strongly enhanced cell viability against H2O2 induced oxidative damage and the inhibitory effect of cell damage was a dose-dependent manner. Furthermore, a protective effect against oxidative stress-induced cell apoptosis was also demonstrated via nuclear staining with Hoechst dye. These results clearly indicate that fucoxanthin isolated from S. siliquastrum possesses prominent antioxidant activity against H2O2-mediated cell damage and which might be a potential therapeutic agent for treating or preventing several diseases implicated with oxidative stress.  相似文献   

13.
Glutamine (GLN) has many types of biological activity in rats, including anti-inflammatory, antioxidative stress, and anti-apoptosis effects. However, little is known about the effects of GLN on bovine mammary epithelial cells (BMEC). γ-d-Glutamyl-meso-diaminopimelic acid (iE-DAP) is a cell wall peptidoglycan component of gram-negative bacteria that can be recognized by the intracellular receptor nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and can cause bovine mastitis. The goal of the present study was to investigate whether GLN protects BMEC from iE-DAP–induced inflammation, oxidative stress, and apoptosis. We cultured BMEC in a GLN-free medium for 24 h and then separated them into 4 groups: cells treated with 1× PBS for 26 or 32 h (control); cells stimulated by 10 μg/mL iE-DAP for 2 or 8 h (2- or 8-h iE-DAP); cells pretreated with 8 or 4 mM GLN for 24 h followed by 2 or 8 h of 1× PBS treatment (8 or 4 mM GLN); and cells pretreated with 8 or 4 mM GLN for 24 h followed by 2 or 8 h of iE-DAP treatment (DG). In the 2-h iE-DAP group, when levels of inflammation peaked, iE-DAP treatment increased both the mRNA and protein expression of NOD1, inhibitor of nuclear factor-κB (NFKBIA, IκB), and nuclear factor-κB subunit p65 (RELA, NF-κB p65), as well as the mRNA expression of IL6 and IL8 and levels of IL-6 and tumor necrosis factor-α in cell culture supernatants. In contrast, 8 mM GLN pretreatment inhibited the mRNA and protein expression of inflammatory-related factors by suppressing the NOD1/NF-κB pathway. In the 8-h iE-DAP group, iE-DAP treatment decreased the mRNA and protein expression of extracellular regulated kinase (Erk, ERK) and nuclear factor erythroid 2–associated factor2 (NFE2L2, Nrf2), as well as the mRNA expression of superoxide dismutase 1 (SOD1), catalase (CAT), coenzyme II oxidoreductase 1 (NQO1), and heme oxygenase 1 (HMOX1, HO1). In addition, iE-DAP treatment increased the expression of malondialdehyde in BMEC when oxidative stress levels peaked. Interestingly, 4 mM GLN pretreatment induced the mRNA and protein expression of antioxidative stress–related factors and inhibited the expression of reactive oxygen species in BMEC by promoting the ERK/Nrf2 pathway. Moreover, GLN reduced apoptosis caused by inflammation and oxidative stress in BMEC. This is the first report showing that GLN protects against iE-DAP-induced inflammation and oxidative stress via the NOD1/NF-κB and ERK/Nrf2 pathways in BMEC.  相似文献   

14.
The protective effect of water extracts of white tea (WEWT) on oxidative stress in vitro is investigated. WEWT, like water extracts of green tea (WEGT) and water extracts of Pu-erh tea (WEPT), demonstrates a marked inhibition of the oxidation of liposome, albumin and LDLmodel systems. WEWT protects against H2O2-induced cytotoxicity, in a dose-dependent manner. The inhibition of ROS generation and MDA formation by WEWT in H2O2-induced Clone 9 cells parallels the effects on cell viability. Moreover, GSH and antioxidant enzymes may play an important role in the protective effect that is associated with H2O2-induced oxidative stress. The HPLC-DAD and HPLC–MS/MS analysis, shows that sixteen bioactive compounds are present in WEWT, which may partially account for its protective effect against oxidative insult. These results suggest that the mechanism of the protective actions of WEWT is related to its antioxidant potential and the maintenance of the normal redox status of the cell.  相似文献   

15.
Essential amino acids (EAA) play an important role in promoting milk protein synthesis in primary bovine mammary epithelial cells (BMEC). However, the regulatory mechanisms involved in the relationship between EAA and milk protein synthesis have not been fully explored. This study examined the effects of seryl-tRNA synthetase (SARS) on EAA-stimulated β-casein synthesis, cell proliferation, and the mammalian target of rapamycin (mTOR) system in BMEC. First, BMEC were cultured in medium either lacking all EAA (?EAA) or that included all EAA (+EAA) for 12 h. The BMEC were then supplemented with the opposing treatments (?EAA supplemented with +EAA and vice versa) for 0 h, 10 min, 0.5 h, 1 h, 6 h, or 12 h, respectively. After the treatment-specific time allotment, proteins were collected for Western blotting. Subsequently, a 2 × 2 factorial design was used to evaluate the interactive of SARS inhibition (control or SARS inhibited) and EAA supply (+EAA or –EAA) on gene and protein abundance, cell viability, and cell cycle in BMEC. Based on the data obtained in the first experiment, the changes in protein abundance of β-casein and SARS depended on EAA treatment time in similar patterns. The protein abundance of β-casein, SARS, and mammalian target of rapamycin (mTOR)-related proteins, cell viability, cell cycle progression, and the mRNA abundance of cyclin D1 (CCND1, cell cycle progression marker) and marker of proliferation Ki-67 (MKI67, cell proliferation marker) were stimulated by the presence of EAA. Correspondingly, when cells were deprived of EAA, cell proliferation and abundance of these proteins and genes were reduced overall. Moreover, the decreases in these aspects were further exacerbated by inhibiting SARS, suggesting that an interaction between EAA and SARS is important for regulating protein synthesis. The results indicated that SARS stimulated the mTOR signaling pathway when EAA were present, enhanced EAA-stimulated cell proliferation, and contributed to increased β-casein production in BMEC.  相似文献   

16.
17.
This study was conducted to evaluate the cytoprotective activity of lotus (Nelumbo nucifera Gaertner) leaf extract (LLE) on mouse embryonic fibroblast (MEF) cells. The 2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical scavenging activities of LLE increased in a concentration dependent manner. The cells, damaged by oxidative stress, decreased their viability following increasing concentration of H2O2, but the co-treatment of n-butanol fraction of LLE and H2O2 resulted in an increase in cell growth, by about 25%, compared to the cells treated with H2O2. The n-butanol fraction of LLE inhibited the cytotoxicity induced by H2O2 in a concentration dependent manner. The oxidative damage to the cells, measured by apoptotic and necrotic cell accumulation, was similar with the addition of the n-butanol fraction of LLE to H2O2. Taken together, these results suggest that LLE inhibited the cytotoxicity which is induced by H2O2, and has a protective effect on MEF cell against oxidative stress.  相似文献   

18.
The cytoprotective effect of quercitrin (QR) against oxidative stress induced cell damage by hydrogen peroxide (H2O2) in Chinese hamster lung fibroblast (V79-4) cells was investigated. QR evidenced a scavenging effect of 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide, hydroxyl radicals and on intracellular ROS, and thus prevented lipid peroxidation. As a result, QR reduced H2O2-induced cell death and apoptosis in V79-4 cells. Moreover, H2O2 induced the cleavage of caspase-3, -9, and poly-ADP-ribose polymerase (PARP) and a reduction in Bcl-xL levels, whereas pretreatment with QR significantly inhibited caspase-3, -9, and PARP cleavage and the reduction in Bcl-xL levels, and ultimately ameliorated H2O2-induced apoptosis. Taken together, these results indicate that the treatment of V79-4 cells with QR can block H2O2-induced apoptosis via the regulation of Bcl-xL. QR may be exploited as a biopreservative in food applications or as a health supplement to alleviate oxidative stress.  相似文献   

19.
Neuroprotective effects of N-acetylglucosamine (GlcNAc), a monosaccharide derivative of glucose, against H2O2-induced neurotoxicity and its underlying mechanism in human SK-N-SH neuroblastoma cells were investigated. Pretreatment of GlcNAc prior to exposure of cells to H2O2 stress significantly reduced the H2O2-mediated neuronal cell death and apoptosis. The GlcNAc dose-dependently decreased the level of intracellular reactive oxygen species (ROS) in H2O2-treated cells and also effectively inhibited H2O2-induced apoptotic features such as DNA fragmentation, caspase-3, and poly ADP-ribose polymerase (PARP) cleavages, and p38 phosphorylation. These results suggested that GlcNAc might potentially serve as agents for prevention of neurodegenerative diseases caused by oxidative stresses and this effect may be associated with the suppression of caspase-3, PARP, and p38 activation.  相似文献   

20.
The synthesis of protein requires the availability of specific AA and a large supply of energy in bovine mammary epithelial cells (BMEC). Whether an interaction exists between Lys/Met ratio and glucose level on milk protein synthesis and its potential regulatory mechanism is unclear. We investigated the effects of different Lys/Met ratios and glucose levels on casein synthesis-related gene expression in BMEC to elucidate the underlying molecular mechanisms. Primary BMEC were subjected to 4 treatments for 36 h, arranged in a 2 × 2 factorial design with Lys/Met ratios of 3:1 (1.2:0.4 mM, LM3.0; total AA = 8.24 mM) and 2.3:1 (1.4:0.6 mM, LM2.3; total AA = 8.64 mM) and glucose levels of 17.5 mM (high glucose level) and 2.5 mM (low glucose level). No interactions between Lys/Met ratio and glucose level on cell viability, cell cycle progression, mRNA, or protein expression levels were found. High glucose level increased cell proliferation and promoted cell cycle transition from intermediate phase (G1 phase) to synthesis (S phase) by approximately 50%, whereas Lys/Met ratio had no effect. Both mRNA and protein abundance of αS1-casein and β-casein were positively affected by LM3.0, whereas a high glucose level increased protein abundance of αS1-casein and β-casein and increased gene expression of CSN1S1 but not of CSN2. Furthermore, high glucose increased the mRNA abundance of ELF5 and decreased that of GLUT8, enhanced protein expression of total and phosphorylated mechanistic target of rapamycin (mTOR), and decreased phosphorylated AMP-activated protein kinase (AMPK) levels. Treatment LM3.0 had a stimulatory effect on total and phosphorylated mTOR but did not affect AMPK phosphorylation. The mRNA levels of JAK2, ELF5, and RPS6KB1 were upregulated and mRNA levels of EIF4EBP1 were downregulated with LM3.0 compared with LM2.3. Our results indicate that casein synthesis was regulated by Lys/Met ratio via JAK2/ELF5, mTOR, and its downstream RPS6KB1 and EIF4EBP1 signaling. In contrast, glucose regulated casein synthesis through promoting cell proliferation, accelerating cell cycle progression, and activating the ELF5 and AMPK/mTOR signaling pathways. Within the range of substrate levels in the present study, a change in Lys/Met ratio had a stronger effect on abundance of αS1-casein and β-casein than a change in glucose level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号