首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100 g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100 g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1 g/100 g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk components between the FFA and TAG treatments. The UFA treatments increased feed efficiency (energy-corrected milk/DM intake), averaging 1.42, 1.53, and 1.48 for CON, FFA, and TAG treatments, respectively. Although milk fat yield was not affected, the UFA treatments decreased the yield of de novo (<16-carbon) synthesized FA (40 g/d) and increased the yield of preformed (>16-carbon) FA (134 g/d). Yield of FA from both sources (16-carbon FA) was reduced by the UFA treatments but to a different extent for FFA versus TAG (72 vs. 100 g/d). An increase was detected in the concentration of trans-10 C18:1 and a trend for an increase in trans-10,cis-12 C18:2 and trans-9,cis-11 C18:2 for the UFA treatments compared with CON. Under the dietary conditions tested, UFA treatments supplemented at 2% diet DM as either soybean FA distillate or soybean oil increased milk yield but did not effectively cause a reduction in milk fat yield, with preformed FA replacing de novo synthesized FA in milk fat. Further research is required to determine if the response to changes in dietary free and esterified FA concentrations is different in diets that differ in their risk for milk fat depression.  相似文献   

2.
The effect of supplementation of increasing amounts of extruded linseed in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) was investigated in regard to dairy performance and the milk fatty acid (FA) composition. In each experiment, 4 lactating multiparous Holstein cows were used in a 4 × 4 Latin square design (28-d periods). The cows were fed a diet (50:50 and 40:60 concentrate:forage ratio for experiments 1 and 2, respectively; dry matter basis) without supplementation (H0 or CS0) or supplemented with 5% (H5 or CS5), 10% (H10 or CS10), or 15% (H15 or CS15) of extruded linseed. Regardless of the forage type, diet supplementation with increasing amounts of extruded linseed had no effect on the dry matter intake, milk yield, or protein content or yield. In contrast, the milk fat content decreased progressively from H0 to H10 diets, and then decreased strongly with the H15 diet in response to increasing amounts of extruded linseed. For CS diets, the milk fat content initially decreased from CS0 to CS10, but then increased with the CS15 diet. For the H diets, the milk saturated FA decreased (−24.1 g/100 g of FA) linearly with increasing amounts of extruded linseed, whereas the milk monounsaturated FA (+19.0 g/100 g), polyunsaturated FA (+4.9 g/100 g), and total trans FA (+14.7 g/100 g) increased linearly. For the CS diets, the extent of the changes in the milk FA composition was generally lower than for the H diets. Milk 12:0 to 16:0 decreased in a similar manner in the 2 experiments with increasing amounts of extruded linseed intake, whereas 18:0 and cis-9 18:1 increased. The response of total trans 18:1 was slightly higher for the CS than H diets. The milk trans-10 18:1 content increased more with the CS than the H diets. The milk cis-9,trans-11 conjugated linoleic acid response to increasing amounts of extruded linseed intake was linear and curvilinear for the H diets, whereas it was only linear for the CS diets. The milk 18:3n-3 percentage increased in a similar logarithmic manner in the 2 experiments. It was concluded that the milk FA composition can be altered by extruded linseed supplementation with increasing concentrations of potentially health-beneficial FA (i.e., oleic acid, 18:3n-3, cis-9,trans-11 conjugated linoleic acid, and odd- and branched-chain FA) and decreasing concentrations of saturated FA. Extruded linseed supplementation increased the milk trans FA percentage.  相似文献   

3.
The objective of this study was to investigate the effect of monensin (MN) and dietary soybean oil (SBO) on milk fat percentage and milk fatty acid (FA) profile. The study was conducted as a randomized complete block design with a 2 × 3 factorial treatment arrangement using 72 lactating multiparous Holstein dairy cows (138 ± 24 d in milk). Treatments were [dry matter (DM) basis] as follows: 1) control total mixed ration (TMR, no MN) with no supplemental SBO; 2) MN-treated TMR (22 g of MN/kg of DM) with no supplemental SBO; 3) control TMR including 1.7% SBO; 4) MN-treated TMR including 1.7% SBO; 5) control TMR including 3.4% SBO; and 6) MN-treated TMR including 3.4% SBO. The TMR (% of DM; corn silage, 31.6%; haylage, 21.2%; hay, 4.2%; high-moisture corn, 18.8%; soy hulls, 3.3%; and protein supplement, 20.9%) was offered ad libitum. The experiment consisted of a 2-wk baseline, a 3-wk adaptation, and a 2-wk collection period. Monensin, SBO, and their interaction linearly reduced milk fat percentage. Cows receiving SBO with no added MN (treatments 3 and 5) had 4.5 and 14.2% decreases in milk fat percentage, respectively. Cows receiving SBO with added MN (treatments 4 and 6) had 16.5 and 35.1% decreases in milk fat percentage, respectively. However, the interaction effect of MN and SBO on fat yield was not significant. Monensin reduced milk fat yield by 6.6%. Soybean oil linearly reduced milk fat yield and protein percentage and linearly increased milk yield and milk protein yield. Monensin and SBO reduced 4% fat-corrected milk and had no effect on DM intake. Monensin interacted with SBO to linearly increase milk fat concentration (g/100 g of FA) of total trans-18:1 in milk fat including trans-6 to 8, trans-9, trans-10, trans-11, trans-12 18:1 and the concentration of total conjugated linoleic acid isomers including cis-9, trans-11 18:2; trans-9, cis-11 18:2; and trans-10, cis-12 18:2. Also, the interaction increased milk concentration of polyunsaturated fatty acids. Monensin and SBO linearly reduced, with no significant interaction, milk concentration (g/100 g of FA) of short- and medium-chain fatty acids (<C16). Soybean oil reduced total saturated FA and increased total monounsaturated FA. These results suggest that monensin reduces milk fat percentage and this effect is accentuated when SBO is added to the ration.  相似文献   

4.
The aim of this work was to characterize the fatty acid (FA) profile of milk from intensive dairy farming systems in the Po Plain (Italy) to estimate the costs of the adopted feeding strategies and to simulate the effect of supplementary premiums on the basis of milk FA composition on milk income. Twenty dairy farms with 5 different feeding strategies were studied: 3 corn silage-based systems in which cows were supplemented with a great proportion (CCH), a medium proportion (CCM), or without commercial concentrate mix (CC0), and 2 systems in which part of corn silage was replaced with grass or legume silage (HF) or with fresh herbage (G), cut and fed indoors. Bulk milk was sampled and lactating cow performance, feeding strategies and forage characteristics were recorded through a survey, 3 times during a year. The milk FA supplementary premium was calculated considering C18:3n-3 and saturated FA (SFA) concentrations, and ratio of total cis C18:1 isomers to C16:0. The CCH, CCM, and CC0 systems bought most of their dairy cow feeds off farm, which allowed them to increase milk production to 35,000 L/yr per hectare. Their low dry matter and crude protein self-sufficiency led to higher feeding costs per liter of milk (from €0.158 to €0.184), and highest income over feed cost was achieved only for milk yield performance greater than 10,000 kg/cow per year. The use of homegrown forages in HF and G increased dry matter and crude protein self-sufficiency and reduced the feeding costs per liter of milk from 9 to 22%, compared with the other studied systems, making HF and G feeding economically competitive, even for a lower milk yield per cow. The studied systems highlighted a remarkable variation in FA profiles. The concentrations of C16:0 and SFA were the highest in CCH (31.53 and 67.84 g/100 g of FA) and G (31.23 and 68.45 g/100 g of FA), because of the larger proportion of commercial concentrate mix in the cow diet. The concentrations of C16:0 and SFA were the lowest in CCM (27.86 and 63.10 g/100 g of FA), because of low roughage-to-concentrate ratio in the cow diet, which is known to favor milk fat depression, affecting particularly these FA. The calculated supplementary premium was the highest in the CCM system, based on milk FA profiles from those herds. The HF diet was rich in forages and resulted in greater concentration of C18:3n-3 in milk (0.57 g/100 g of FA) than the other systems and thus led to an increase in milk FA supplementary premium. Milk from G and HF milk had the lowest ratio of Σn-6:Σn-3 FA compared with milk from the systems based on higher corn silage proportion in the cow diet (3.71, and 3.25, respectively, vs. 4.58 to 4.78), with the lower ratios being closer to recommendation for human nutrition.  相似文献   

5.
Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100 g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis-11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100 g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI) = 23.39 + 9.74 × C16:0-iso – 1.06 × trans-10+11 C18:1 – 1.75 × cis-9,12 C18:2 (R2 = 0.54), and CH4 (g/kg of FPCM) = 21.13 – 1.38 × C4:0 + 8.53 × C16:0-iso – 0.22 × cis-9 C18:1 – 0.59 × trans-10+11 C18:1 (R2 = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk.  相似文献   

6.
The objective of this work was to evaluate the effect of the supplementation of conjugated linoleic acid (CLA; 4.5 g of cis-9,trans-11 C18:2 and 4.5 g of trans-10,cis-12 C18:2) on milk performance, milk fatty acid (FA) composition, and adipose tissue reactivity in dairy goats fed a high-concentrate diet based on corn silage. Twenty-four multiparous dairy goats in early to mid lactation were used in a 10-wk trial, with a 3-wk adaptation to the experimental total mixed ration that contained corn silage (35%, dry matter basis), beet pulp (20%), barley (15%), and a commercial concentrate (30%). Goats were randomly allocated to 2 experimental groups and they were fed 45 g/d of a lipid supplement (either CLA or Ca salts of palm oil added on top of the total mixed ration). Individual milk production and composition were recorded weekly, and milk FA composition was analyzed in wk 2, 5, and 6. In the last week of the trial, an isoproterenol challenge was performed for 12 goats before morning feeding. The CLA supplementation had no effect on dry matter intake (DMI), body weight (BW), milk yield, milk protein content, and lactose yield and content, but it significantly decreased milk fat yield and content by 18 and 15%, respectively. The decrease in milk fat yield was related to a lower secretion of FA synthesized de novo, of the medium-chain FA, and to a lesser extent of the long-chain FA that are taken up from the peripheral circulation. The CLA supplementation decreased the proportion of the sum of C16:0 and C16:1 and the sum of total cis C18:1, and it increased the proportions of the sum of long-chain (C >16) and the sum of iso FA without modification of the total trans C18:1 and the sum of FA synthesized de novo (C <16). During the first 25 min relative to isoproterenol injection, the maximal concentrations, the increases above basal concentration, the changes in area under the curve, and the total area under the curve for glucose and nonesterified FA were not affected by CLA treatment. In conclusion, CLA supplementation associated with a high-concentrate diet based on corn silage resulted in decreased milk fat yield, increased net energy balance, and it did not affect the sensitivity of the adipose tissue to lipolytic challenge in lactating goats.  相似文献   

7.
This work was conducted to investigate the effect of supplementing grazing ewes on pasture with a cereal concentrate on the milk fatty acid (FA) profile. Ninety Assaf ewes in mid lactation were distributed in 9 lots of 10 animals each and allocated to 3 feeding regimens: 1) pasture—ewes were only allowed to graze pasture (an irrigated sward of Lolium perenne, Trifolium pratense, and Dactylis glomerata); 2) PS—grazing ewes were supplemented with oat grain (700 g/animal and day); and 3) TMR—ewes were fed ad libitum a total mixed ration (TMR; 80:20 concentrate/forage ratio). Milk yield and composition were recorded for 5 wk. The highest milk yield was observed in ewes receiving the TMR and the lowest in grazing ewes supplemented with oat grain. Productions of milk fat, protein, and total solids showed the lowest values in treatment PS. The atherogenicity index, which comprises C12:0, C14:0, and C16:0, in PS milk fat was no different from that observed in milk from animals on pasture (1.53 for pasture, 1.54 for PS, and 3.22 for TMR). Oat grain supplementation generated higher amounts of C18:0 and cis-9 C18:1 in milk fat than the pasture-only diet, but significantly decreased the levels of α-linolenic acid and most of intermediates of the process of biohydrogenation of this FA. Cis-9 trans-11 C18:2 and trans-11 C18:1, its precursor for endogenous synthesis in the mammary gland, were lower in PS (0.58 and 1.59 g/100 g of total FA) than in TMR (0.72 and 1.92 g/100 g of total FA) and very different from the results observed in grazing ewes receiving no supplement (1.21 and 3.88 g/100 g of total FA). Furthermore, the lowest levels of trans-10 C18:1 and trans-10 cis-12 C18:2 were detected in the milk fat of ewes fed pasture. It is concluded that, when pasture quality and availability do not limit dairy production, supplementation of grazing ewes with oat grain compromised the milk FA profile without any significant positive effect on milk production.  相似文献   

8.
《Journal of dairy science》2023,106(4):2716-2728
Cows undergo immense physiological stress to produce milk during early lactation. Monitoring early lactation milk through Fourier-transform infrared (FTIR) spectroscopy might offer an understanding of which cows transition successfully. Daily patterns of milk constituents in early lactation have yet to be reported continuously, and the study objective was to initially describe these patterns for cows of varying parity groups from 3 through 10 d postpartum, piloted on a single dairy. We enrolled 1,024 Holstein cows from a commercial dairy farm in Cayuga County, New York, in an observational study, with a total of 306 parity 1 cows, 274 parity 2 cows, and 444 parity ≥3 cows. Cows were sampled once daily, Monday through Friday, via proportional milk samplers, and milk was stored at 4°C until analysis using FTIR. Estimated constituents included anhydrous lactose, true protein, and fat (g/100 g of milk); relative % (rel%) of total fatty acids (FA) and concentration (g/100 g of milk) of de novo, mixed, and preformed FA; individual fatty acids C16:0, C18:0, and C18:1 cis-9 (g/100 g of milk); milk urea nitrogen (MUN; mg/100 g of milk); and milk acetone (mACE), milk β-hydroxybutyrate (mBHB), and milk-predicted blood nonesterified fatty acids (mpbNEFA) (all expressed in mmol/L). Differences between parity groups were assessed using repeated-measures ANOVA. Milk yield per milking differed over time between 3 and 10 DIM and averaged 8.7, 13.3, and 13.3 kg for parity 1, 2, and ≥3 cows, respectively. Parity differences were found for % anhydrous lactose, % fat, and preformed FA (g/100 g of milk). Parity differed across DIM for % true protein, de novo FA (rel% and g/100 g of milk), mixed FA (rel% and g/100 g of milk), preformed FA rel%, C16:0, C18:0, C18:1 cis-9, MUN, mACE, mBHB, and mpbNEFA. Parity 1 cows had less true protein and greater fat percentages than parity 2 and ≥3 cows (% true protein: 3.52, 3.76, 3.81; % fat: 5.55, 4.69, 4.95, for parity 1, 2, ≥3, respectively). De novo and mixed FA rel% were reduced and preformed FA rel% were increased in primiparous compared with parity 2 and ≥3 cows. The increase in preformed FA rel% in primiparous cows agreed with milk markers of energy deficit, such that mpbNEFA, mBHB, and mACE were greatest in parity 1 cows followed by parity ≥3 cows, with parity 2 cows having the lowest concentrations. When measuring milk constituents with FTIR, these results suggest it is critical to account for parity for the majority of estimated milk constituents. We acknowledge the limitation that this study was conducted on a single farm; however, if FTIR technology is to be used as a method of identifying cows maladapted to lactation, understanding variations in early lactation milk constituents is a crucial first step in the practical adoption of this technology.  相似文献   

9.
The fatty acid profiles of Chinese Maiwa yak milk samples were evaluated at different seasons (n = 96) and parities (n = 32). Saturated fatty acid content and monounsaturated fatty acid content showed no significant difference (> 0.05) between warm season and cold season; however, polyunsaturated fatty acid (PUFA) content in warm season was higher (< 0.05) than in cold season. Monounsaturated fatty acid and PUFA contents were higher (< 0.05) in multiparous Maiwa yak milk than in primiparous Maiwa yak milk. Trans‐11C18:1, cis‐9, cis‐12C18:2, CLA and C18:3 contents were higher (< 0.05) in multiparous Maiwa yak than in primiparous Maiwa yak milk.  相似文献   

10.
《Journal of dairy science》2021,104(9):9813-9826
The present study investigated the effect of a high proportion of different forage species in the diet, parity, milking time, and days in milk (DIM) on milk fatty acid (FA) profile, and transfer efficiency of C18:2n-6, C18:3n-3, n-6, and n-3 in dairy cows. Swards with perennial ryegrass [early maturity stage (EPR) and late maturity stage (LPR)], festulolium, tall fescue (TF), red clover (RC), and white clover (WC) were cut in the primary growth, wilted, and ensiled without additives. Thirty-six Danish Holstein cows in an incomplete Latin square design were fed ad libitum with total mixed rations containing a high forage proportion (70% on dry matter basis). The total mixed rations differed only in forage source, which was either 1 of the 6 pure silages or a mixture of LPR silage with either RC or WC silage (50:50 on dry matter basis). Proportion of C18:2n-6 in milk FA was affected by diet, and RC and WC diets resulted in the highest proportion of C18:2n-6 in milk FA (21.6 and 21.8 g/kg of FA, respectively). The highest and lowest milk C18:3n-3 proportion was observed in WC and LPR, respectively. In addition, WC diet resulted in highest transfer efficiency of C18:3n-3 from feed to milk (12.2%) followed by RC diet (10.7%), whereas EPR diet resulted in the lowest transfer efficiency of C18:3n-3 (3.45%). The highest milk proportion of cis-9,trans-11 conjugated linoleic acid (CLA) was observed in cows fed TF (3.20 g/kg of FA), which was 23 to 64% higher than the proportion observed in the cows fed the other diets. The highest α-tocopherol concentration (µg/mL) in milk was observed in EPR (1.15), LPR (1.10), and festulolium (1.06). Primiparous cows showed higher proportion of cis-9,trans-11 CLA (2.63 g/kg of FA) than multiparous cows (2.21 g/kg of FA). Cows early in lactation had a higher proportion of long-chain FA in milk than cows later in lactation, as long-chain FA decreased with 0.184 g/kg of FA per DIM, whereas medium-chain FA increased with 0.181 g/kg of FA per DIM. Proportion of C18:2n-6 in milk from evening milking was higher than in milk from morning milking (16.7 vs. 15.8 g/kg of FA). In conclusion, the results showed that milk FA profile of cows was affected by forage source in the diet, and RC and WC increased the health-promoting FA components, particularly n-3, whereas the TF diet increased proportion of CLA isomers in milk. Proportion of CLA isomers in milk FA from primiparous cows was higher than in milk from multiparous cows. In addition, evening milk contained more FA originating from diets compared with morning milk.  相似文献   

11.
12.
We aimed to compare the effects of ground (GC) or cracked corn (CC), with or without flaxseed oil (FSO), on milk yield, milk and plasma fatty acid (FA) profile, and nutrient digestibility in Jersey cows fed diets formulated to contain similar starch concentrations. Twelve multiparous organic-certified Jersey cows averaging (mean ± standard deviation) 455 ± 41.9 kg of body weight and 152 ± 34 d in milk and 4 primiparous organic-certified Jersey cows averaging (mean ± standard deviation) 356 ± 2.41 kg of body weight and 174 ± 30 d in milk in the beginning of the experiment were used. Cows were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 24 d with 18 d for diet adaptation and 6 d for data and sample collection. Treatments were fed as total mixed rations consisting of (dry matter basis): (1) 0% FSO + 27.1% GC, (2) 0% FSO + 28.3% CC, (3) 3% FSO + 27.1% GC, and (4) 3% FSO + 28.3% CC. All cows were offered 55% of the total diet dry matter as mixed grass-legume baleage and treatments averaged 20% starch. Significant FSO × corn grain particle size interactions were observed for some variables including milk concentration of lactose and proportions of cis-9,cis-12,cis-15 18:3 in milk and plasma. The proportion of cis-9,cis-12,cis-15 18:3 in milk and plasma decreased slightly when comparing GC versus CC in 0% FSO cows, but a larger reduction was observed in 3% FSO cows. Dry matter intake did not differ and averaged 16.1 kg/d across diets. Feeding 3% FSO increased yields of milk and milk fat and lactose and feed and milk N efficiencies, but decreased fat, true protein, and MUN concentrations and apparent total-tract digestibility of fiber. The Σ branched-chain, Σ<16C, Σ16C, and Σn-6 FA decreased, whereas Σ18C, Σcis-18:1, and Σtrans-18:1 FA increased in 3% versus 0% FSO cows. No effect of corn particle size was observed for production and milk components. However, the apparent total-tract digestibility of starch was greater in GC than CC cows. Compared with CC, GC increased Σ branched-chain, Σ<16C, Σ16C, Σn-6 FA, and decreased Σ18C and Σ cis-18:1 FA in milk fat. Overall, results of this study are more directly applicable to dairy cows fed low starch, mixed grass-legume baleage-based diets.  相似文献   

13.
The aim of this study was to evaluate the effect of different forage:concentrate (FC) ratios in dairy ewe diets supplemented with sunflower oil (SO) on animal performance and milk fatty acid (FA) profile, particularly focusing on trans C18:1 FA and conjugated linoleic acid (CLA). Sixty lactating Assaf ewes were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement: 3 FC ratios (30:70, 50:50, and 70:30) and 2 levels of SO addition (0 and 20 g/kg of dry matter). Both the diet FC ratio and SO supplementation affected milk yield, but differences between treatments were small. Although the proportion of concentrate induced limited changes in milk FA profile, dietary SO significantly decreased saturated FA and enhanced total CLA. Furthermore, the incorporation of SO in ewe diets decreased the atherogenicity index value by about 25% and doubled the contents of potentially healthy FA such as trans-11 C18:1 and cis-9,trans-11 CLA. However, the inclusion of SO in a high-concentrate diet (30:70) could switch linoleic acid biohydrogenation pathways, resulting in a significant increase in trans-10 C18:1, trans-9,cis-11 C18:2, and trans-10,cis-12 C18:2 milk fat percentages.  相似文献   

14.
The objective of this study was to assess the effects of dietary supplementation of extruded linseed on animal performance and fatty acid (FA) profile of ewe milk for the production of n-3 FA- and conjugated linoleic acid-enriched cheeses. A Manchega ewe flock (300 animals) receiving a 60:40 forage:concentrate diet was divided into 3 groups supplemented with 0, 6, and 12 g of extruded linseed/100 g of dry matter for the control, low, and high extruded linseed diets, respectively. Bulk and individual milk samples from 5 dairy ewes per group were monitored at 7, 14, 28, 45, and 60 d following supplementation. Manchego cheeses were made with bulk milk from the 3 treatment groups. Milk yield increased in dairy ewes receiving extruded linseed. Milk protein, fat, and total solids contents were not affected by linseed supplementation. Milk contents of α-linolenic acid increased from 0.36 with the control diet to 1.91% total FA with the high extruded linseed diet. Similarly, cis-9 trans-11 C18:2 rose from 0.73 to 2.33% and its precursor in the mammary gland, trans-11 C18:1, increased from 1.55 to 5.76% of total FA. This pattern occurred with no significant modification of the levels of trans-10 C18:1 and trans-10 cis-12 C18:2 FA. Furthermore, the high extruded linseed diet reduced C12:0 (−30%), C14:0 (−15%) and C16:0 (−28%), thus significantly diminishing the atherogenicity index of milk. The response to linseed supplementation was persistently maintained during the entire study. Acceptability attributes of n-3-enriched versus control cheeses ripened for 3 mo were not affected. Therefore, extruded linseed supplementation seems a plausible strategy to improve animal performance and nutritional quality of dairy lipids in milk and cheese from ewes.  相似文献   

15.
《Journal of dairy science》2021,104(12):12616-12627
Our objective was to determine whether abomasal infusions of increasing doses of oleic acid (cis-9 C18:1; OA) improved fatty acid (FA) digestibility and milk production of lactating dairy cows. Eight rumen-cannulated multiparous Holstein cows (138 d in milk ± 52) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design with 18-d periods consisting of 7 d of washout and 11 d of infusion. Production and digestibility data were collected during the last 4 d of each infusion period. Treatments were 0, 20, 40, or 60 g/d of OA. We dissolved OA in ethanol before infusions. The infusate solution was divided into 4 equal infusions per day, occurring every 6 h, delivering the daily cis-9 C18:1 for each treatment. Animals received the same diet throughout the study, which contained (percent diet dry matter) 28% neutral detergent fiber, 17% crude protein, 27% starch, and 3.3% FA (including 1.8% FA from a saturated FA supplement containing 32% C16:0 and 52% C18:0). Infusion of OA did not affect intake or digestibility of dry matter and neutral detergent fiber. Increasing OA from 0 to 60 g/d linearly increased the digestibility of total FA (8.40 percentage units), 16-carbon FA (8.30 percentage units), and 18-carbon FA (8.60 percentage units). Therefore, increasing OA linearly increased absorbed total FA (162 g/d), 16-carbon FA (26.0 g/d), and 18-carbon FA (127 g/d). Increasing OA linearly increased milk yield (4.30 kg/d), milk fat yield (0.10 kg/d), milk lactose yield (0.22 kg/d), 3.5% fat-corrected milk (3.90 kg/d), and energy-corrected milk (3.70 kg/d) and tended to increase milk protein yield. Increasing OA did not affect the yield of mixed milk FA but increased yield of preformed milk FA (65.0 g/d) and tended to increase the yield of de novo milk FA. Increasing OA quadratically increased plasma insulin concentration with an increase of 0.18 μg/L at 40 g/d OA, and linearly increased the content of cis-9 C18:1 in plasma triglycerides by 2.82 g/100 g. In conclusion, OA infusion increased FA digestibility and absorption, milk fat yield, and circulating insulin without negatively affecting dry matter intake. In our short-term infusion study, most of the digestion and production measurements responded linearly, indicating that 60 g/d OA was the best dose. Because a quadratic response was not observed, improvements in FA digestibility and production might continue with higher doses of OA, which deserves further attention.  相似文献   

16.
The objective of this study was to investigate the effect of dietary fiber level on milk fat concentration, yield, and fatty acid (FA) profile of cows fed diets low in polyunsaturated fatty acid (PUFA). Six rumen-fistulated Holstein dairy cows (639 ± 51 kg of body weight) were used in the study. Cows were randomly assigned to 1 of 2 dietary treatments, a high fiber (HF; % of dry matter, 40% corn silage, 27% alfalfa silage, 7% alfalfa hay, 18% protein supplement, 4% ground corn, and 4% wheat bran) or a low fiber (LF; % of dry matter, 31% corn silage, 20% alfalfa silage, 5% alfalfa hay, 15% protein supplement, 19% ground wheat, and 10% ground barley) total mixed ration. The diets contained similar levels of PUFA. The experiment was conducted over a period of 4 wk. Ruminal pH was continuously recorded and milk samples were collected 3 times a week. Milk yield and dry matter intake were recorded daily. The rumen fluid in cows receiving the LF diet was below pH 5.6 for a longer duration than in cows receiving the HF diet (357 vs. 103 min/d). Neither diet nor diet by week interaction had an effect on milk yield (kg/d), milk fat concentration and yield, or milk protein concentration and yield. During wk 4, milk fat concentration and milk fat yield were high and not different between treatments (4.30% and 1.36 kg/d for the HF treatment and 4.31% and 1.33 kg/d for the LF treatment, respectively). Cows receiving the LF diet had greater milk concentrations (g/100 g of FA) of 7:0; 9:0; 10:0; 11:0; 12:0; 12:1; 13:0; 15:0; linoleic acid; FA <C16; and PUFA; and lower concentrations of iso 15:0; 18:0; trans-9 18:1; cis-9, trans-11 conjugated linoleic acid (CLA); trans-9, cis-12 18:2; 20:0; and cis-9 20:1 compared with cows receiving the HF diet. Milk concentrations (g/100 g of FA) of total trans 18:1; trans-10 18:1; trans-11 18:1; trans-10, cis-12 CLA, and trans-9, cis-11 CLA were not different between treatments. The study demonstrated that cows fed a diet low in fiber and low in PUFA may exhibit subacute ruminal acidosis and moderate changes to milk fatty acid profile but without concomitant milk fat depression. The changes in FA profile may be useful for the diagnosis of SARA even in the absence of milk fat depression.  相似文献   

17.
The effect of a grain-based concentrate supplement on fatty acid (FA) intake and concentration of milk FA in early lactation was investigated in grazing dairy cows that differed in their country of origin and in their estimated breeding value for milk yield. It was hypothesized that Holstein-Friesian cows of North American (NA) origin would produce milk lower in milk fat than those of New Zealand (NZ) origin, and that the difference would be associated with lower de novo synthesis of FA. In comparison, increasing the intake of concentrates should have the same effect on the FA composition of the milk from both strains. Fifty-four cows were randomly assigned in a factorial arrangement to treatments including 3 amounts of concentrate daily [0, 3, and 6 kg of dry matter (DM)/cow] and the 2 strains. The barley/steam-flaked corn concentrate contained 3.5% DM FA, with C18:2, C16:0, and C18:1 contributing 48, 18, and 16% of the total FA. The pasture consumed by the cows contained 4.6% DM FA with C18:3, C16:0, and C18:1 contributing 51, 10, and 10% of the FA, respectively. Pasture DM intake decreased linearly with supplementation, but total DM intake was not different between concentrate or strain treatments, averaging 16.2 kg of DM/cow, with cows consuming 720 g of total FA/d. Cows of the NA strain had lesser concentrations of milk fat compared with NZ cows (3.58 vs. 3.95%). Milk fat from the NA cows had lesser concentrations of C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0, and greater concentrations of cis-9 C18:1, C18:2, and cis-9, trans-11 C18:2, than NZ cows. These changes indicated that in milk from NA cows had a lesser concentration of de novo synthesized FA and a greater concentration of FA of dietary origin. Milk fat concentration was not affected by concentrate supplementation. Increasing concentrate intake resulted in linear increases in the concentrations of C10:0, C12:0, C14:0, and C18:2 FA in milk fat, and a linear decrease in the concentration of C4:0 FA. The combination of NA cows fed pasture alone resulted in a FA composition of milk that was potentially most beneficial from a human health perspective; however, this would need to be balanced against other aspects of the productivity of these animals.  相似文献   

18.
This study compared the chemical composition and fatty acid (FA) profile of Manchego type cheese and Panela cheese made from hair sheep milk and compared these with both types of cheese manufactured with cow milk as a reference. In addition, this study aimed to determine differences in sensory characteristics between Manchego type cheeses manufactured with either hair sheep milk or cow milk. A total of 25 and 14 Manchego type cheeses from hair sheep milk and cow milk were manufactured, respectively. In addition, 30 and 15 Panela cheeses from hair sheep milk and cow milk were manufactured, respectively. The chemical composition and FA profile were determined in all cheeses. In addition, a sensory analysis was performed in Manchego type cheeses manufactured from either hair sheep milk or cow milk. Moisture content was lower in Manchego type cheeses (37.5 ± 1.26 and 37.5 ± 1.26 g/100 g in cheeses manufactured from hair sheep milk and cow milk, respectively) than in Panela cheeses (54.0 ± 1.26 and 56.1 ± 1.26 g/100 g in cheeses manufactured from hair sheep milk and cow milk, respectively). Ash, protein, and sodium contents were higher in Manchego type cheeses than in Panela cheeses. Manchego type cheese manufactured from hair sheep milk contained more C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:2 cis-9,cis-12, total saturated FA, total short-chain FA, total medium-chain FA, total polyunsaturated FA, and de novo FA than Manchego type cheeses from cow milk. Total content of short-chain FA was higher in hair sheep cheeses (24.4 ± 1.30 and 19.6 ± 1.30 g/100 g in Manchego type and Panela cheeses, respectively) than in cow cheeses (8.89 ± 1.30 and 8.26 ± 1.30 g/100 g in Manchego type and Panela cheeses, respectively). Manchego type cheeses from hair sheep milk obtained higher scores for odor (7.05), texture (6.82), flavor (7.16), and overall acceptance (7.16) compared with those made from cow milk (6.37, 6.12, 6.17, and 6.83, respectively). In conclusion, both Manchego type cheese and Panela cheese manufactured with hair sheep milk had a similar chemical composition and contained higher levels of short-chain FA, total polyunsaturated FA, and de novo FA than those manufactured with cow milk.  相似文献   

19.
Earlier research showed that conjugated linoleic acid (CLA) content in milk fat is highest when cows’ diets are supplemented with a blend of fish oil (FO) and linoleic acid-rich oils. The objective of this study was to compare the effect of FO and sunflower oil (SFO) supplementation on milk cis-9, trans-11 CLA when dairy cows managed on pasture or in confinement. Fourteen Holstein cows were assigned into 2 treatment groups: cows grazed on alfalfa-grass pasture (PAS) or were fed corn silage-alfalfa hay mix ad libitum (LOT). Both groups were supplemented with a 8.2 kg/d grain supplement containing 640 g of FO and SFO (1:3 wt/wt). Grain supplement was fed in 2 equal portions after each milking, for a period of 3 wk. Milk samples were collected during the last 3 d of the experimental period. Milk yield was greater with the LOT diet (23.1 kg/d) compared with the PAS diet (19.4 kg/d). Milk fat percentages (2.51 and 2.95 for the LOT and PAS, respectively) and yields (0.57 and 0.51 kg/d) were similar for the 2 diets. Milk protein percentages were not affected by diets (3.34 and 3.35 for the LOT and PAS diets, respectively), but protein yields were lower for the PAS diet (0.61 kg/d) compared with the LOT diet (0.75 kg/d). Treatment diets had no effect on milk trans C18:1 concentrations [10.64 and 9.82 g/100 g of total fatty acids (FA) for the LOT and PAS, respectively] or yields (60.65 and 64.01 g/d), but did affect isomers distributions. Concentration (g/100 g of total FA) of vaccenic acid was lower with the LOT diet (2.15) compared with the PAS diet (4.52), whereas concentration of trans-10 C18:1 was greater with the LOT diet (4.99) compared with the PAS diet (1.69). Milk cis-9, trans-11 CLA concentration was greater with the PAS diet (1.52) compared with the LOT diet (0.84). In conclusion, the increase in milk cis-9, trans-11 CLA content was greater when pasture-based diets were supplemented with FO and SFO. The lower cis-9, trans-11 CLA concentration in milk from the confinement-fed cows resulted from trans-10 C18:1 replacing vaccenic acid as the predominant trans C18:1 isomer.  相似文献   

20.
This experiment (replicated 3 × 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号