首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
This paper attempts to model and predict the spring-back for creep age forming of a 7075 Al-Alclad alloy using statistical analyses based on a design of experiments method. Time and temperature were chosen as effective variables for determining spring-back in the creep age-forming process. The D-optimal design of experiments method facilitated statistical analyses and the extraction of a mathematical model for determining spring-back in the experimental variables domain. The spring-back of the specimens was calculated using a numerical procedure based on the pure bending theory. Analysis of the variances for spring-back showed that temperature was the most effective variable in the creep-age forming process. Additionally, a mathematical model and the response surface of the spring-back showed that to decrease spring-back, the significant variables should be in the upper level. The spring-back in the creep age-forming process was optimized for a 7075 Al-Alclad alloy in the optimum mechanical properties region.  相似文献   

2.
This study deals with the experimental and numerical investigation of springback in an aluminium alloy at different temperatures. An experimental split-ring test is performed on a AA5754-O alloy using a laboratory drawing device. The influence of temperature during forming over springback is measured from room temperature to 200 °C. The temperature is the same for all tools and is maintained constant during all the forming process. The experimental results are compared to numerical simulations performed with the finite element code Abaqus. Material parameters are identified using uniaxial tensile tests at different temperatures and several strain rates in order to take into account both temperature and viscous effects in a coupled thermomechanical constitutive law. The stress and strain states in the cup at the end of the drawing and after springback are analyzed as a function of temperature and a detailed study of stress distributions in the thickness of the blank is proposed. It is shown that the effect of temperature tends to decrease the stress gradient in the cup wall that is directly linked to the decrease of the springback opening of the ring. The distribution of the hoop stress in the cup wall is the main factor influencing the springback mechanism in warm forming condition.  相似文献   

3.
4.
Cobalt chrome alloys are the most extensively used material in the field of total hip and total knee implants, both of which need highly accurate form and low surface roughness for longevity in vivo. In order to achieve the desired form, it is extremely important to understand how process parameters of the final finishing process affect the material removal rate. This paper reports a modified Preston equation model combining process parameters to allow prediction of the material removal rate during bonnet polishing of a medical grade cobalt chrome alloy. The model created is based on experiments which were carried out on a bonnet polishing machine to investigate the effects of process parameters, including precess angle, head speed, tool offset and tool pressure, on material removal rate. The characteristic of material removal is termed influence function and assessed in terms of width, maximal depth and material removal rate. Experimental results show that the width of the influence function increases significantly with the increase of the precess angle and the tool offset; the depth of the influence function increases with the increase of the head speed, increases first and then decrease with the increase of the tool offset; the material removal rate increases with the increase of the precess angle non-linearly, with the increase of the head speed linearly, and increases first then decreases with the increase of the tool offset because of the bonnet distortion; the tool pressure has a slight effect on the influence function. The proposed model has been verified experimentally by using different Preston coefficients from literature. The close values of the experimental data and predicted data indicate that the model is viable when applied to the prediction of the material removal rate in bonnet polishing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号