首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of dairy science》2023,106(2):1414-1428
This study was designed to evaluate whether the utilization of a second PGF treatment at the end of an estradiol/progesterone (E2/P4)-based protocol with or without GnRH at the beginning of the protocol would improve pregnancy rates of lactating Holstein cows assigned to timed embryo transfer. A total of 501 lactating Holstein cows in 5 farms were enrolled in the experiment. Within farm, cows were blocked by parity and, within block, were assigned randomly to (1) insertion of an intravaginal P4 device (controlled internal drug-releasing device; CIDR) and estradiol benzoate on d ?11, PGF on d ?4, CIDR withdrawal and an injection of estradiol cypionate on d ?2, and timed embryo transfer on d 7 (1-PGF; n = 164); (2) the same treatments as 1-PGF, but with PGF administered on d ?4 and ?2 (2-PGF; n = 171); and (3) 2-PGF with the addition of a GnRH treatment on d ?11 (GnRH+2-PGF; n = 166). Ovaries were scanned by transrectal ultrasonography on d ?11, ?4, and 7, and blood samples were collected on d ?11, ?4, 0, and 7 for P4 determination. Treatment comparisons were performed using contrasts. The proportion of cows with a new corpus luteum on d ?4 was greater in GnRH+2-PGF cows. Cows in 1-PGF had a greater P4 concentration on d 0 but lesser P4 on d 7 compared with cows in the other groups. Cows assigned to receive 2-PGF (2-PGF and GnRH+2-PGF) had greater estrus expression, and a greater proportion of cows ovulated to estradiol cypionate. No further contrast effects were observed for follicle diameter, double ovulation rate, pregnancy per embryo transfer (P/ET) on d 32 and 60, or pregnancy loss. As P4 concentration on d ?4 increased, P/ET on d 60 tended to increase. Cows with P4 ≥3.66 ng/mL on d ?4 had greater P/ET on d 32 and 60 than those with P4 below that threshold. Regardless of treatment, cows with P4 concentration ≥3.66 ng/mL also had a greater pregnancy per synchronized protocol (P/SP) on d 60. Also, a P4 concentration on d ?4 (low or high) × follicle diameter (continuous) interaction tendency was observed when evaluating P/ET. Although P/ET did not differ among cows with different follicles sizes with reduced P4 concentration on d ?4 (<3.66 ng/mL), it increased in cows with larger follicles exposed to increased P4 concentration (≥3.66 ng/mL). When P4 on d 0 was evaluated, P/ET on d 32 and 60 was greater for cows with low (≤0.09 ng/mL) versus high (>0.21 ng/mL) P4; as P4 concentration on d 0 increased, P/ET linearly decreased. In summary, cows with increased P4 concentrations during growth of the ovulatory follicular wave had improved P/ET. Administering a second PGF dose reduced P4 concentration on d 0 and increased ovulatory response to the protocol, but no benefits were observed on P/ET or P/SP.  相似文献   

2.
Presynchronization of cows with 2 injections of prostaglandin administered 14 d apart (Presynch-Ovsynch) is a widely adopted procedure to increase pregnancy per artificial insemination (P/AI) at first service. Recently, a presynchronization protocol including GnRH and PGF (Double-Ovsynch; GnRH, 7 d, PGF, 3 d, GnRH) followed 7 d later by an Ovsynch protocol was introduced to overcome the limitations of PGF-based protocols for presynchronization of anovular cows and to precisely set up cows on d 7 of the estrous cycle when the Ovsynch is initiated. A systematic review of the literature and a meta-analytical assessment was performed with the objective to compare the reproductive performance of lactating dairy cows presynchronized with these 2 protocols for the first timed AI (TAI) considering parity-specific effects. A fixed or a random effects meta-analysis was used based on the heterogeneity among the experimental groups. Reproductive outcomes of interest were P/AI measured on d 32 (28–42) and pregnancy loss between d 32 and 60 (42–74) of gestation. A total of 25 articles with 27 experimental groups from 63 herds including 21,046 cows submitted to first TAI using either a Presynch-Ovsynch or a Double-Ovsynch protocol were reviewed. Results for P/AI were then categorized by parity if available. Information was available for P/AI for 7,400 and 10,999 primiparous and multiparous cows, respectively. Information regarding pregnancy loss was available for 7,477 cows. In the random effects model for all cows, the overall proportion of P/AI was 41.7% [95% confidence interval (CI): 39.1–44.3; n = 8,213] and 46.2% (95% CI: 41.9–50.5; n = 12,833) on d 32 after TAI for Presynch-Ovsynch and Double-Ovsynch, respectively. In the random effects model for primiparous cows, the overall proportion of P/AI was 43.4% (95% CI: 36.2–47.7; n = 2,614) and 51.4% (95% CI: 47.4–55.4; n = 4,786) on d 32 after TAI for Presynch-Ovsynch and Double-Ovsynch, respectively. In the random effects model for multiparous cows, the overall proportion of P/AI was 39.2% (95% CI: 36.2–42.3; n = 3,411) and 41.4% (95% CI: 36.4–46.4; n = 7,588) on d 32 after TAI for Presynch-Ovsynch and Double-Ovsynch, respectively. The overall proportion of pregnancy loss was 11.3% (95% CI: 7.6–15.7; n = 3,247) and 11.7% (95% CI: 9.3–14.3; n = 4,230) on d 60 after AI for Presynch-Ovsynch to and Double-Ovsynch, respectively. Substantial heterogeneity existed among the experimental groups regarding P/AI and pregnancy loss. In summary, a benefit was detected for P/AI in primiparous cows presynchronized with a Double-Ovsynch protocol for the first TAI, but this benefit was not observed in multiparous cows.  相似文献   

3.
Our objective was to evaluate the effect of a second PGF treatment (25 mg of dinoprost) or a double dose of PGF (50 mg of dinoprost) during a Resynch protocol on luteal regression and pregnancies per artificial insemination (P/AI) in lactating dairy cows. Lactating Holstein cows (n = 1,100) were randomly assigned at a nonpregnancy diagnosis to receive (1) Ovsynch (control: 100 µg of GnRH; 7 d, 25 mg of PGF; 56 h, 100 µg of GnRH), (2) Ovsynch with a second PGF treatment (GPPG: 100 µg of GnRH; 7 d, 25 mg of PGF; 24 h, 25 mg of PGF; 32 h, 100 µg of GnRH), or (3) Ovsynch with a double dose of PGF (GDDP: 100 µg of GnRH; 7 d, 50 mg of PGF; 56 h, 100 µg of GnRH). All cows received timed artificial insemination (TAI) approximately 16 h after the second GnRH treatment (G2). Pregnancy diagnosis was performed by transrectal palpation 39 ± 3 d after TAI, and pregnancy status was reconfirmed 66 d after TAI. Blood samples collected from a subset of cows in each treatment at the first PGF treatment (n = 394) and at G2 (n = 367) were assayed for progesterone (P4). Data were analyzed by logistic regression using the GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). At 39 d after TAI, GPPG cows tended to have more P/AI than control cows [35% (137/387) vs. 31% (107/349)], whereas P/AI for GDDP cows [32% (118/364)] did not differ from that for control cows. Pregnancy loss from 38 to 66 d did not differ among treatments and was 8% (30/362). The percentage of cows with complete luteal regression (P4 <0.4 ng/mL at G2) tended to differ among treatments and was greater for GPPG cows than for GDDP and control cows (94% vs. 88% vs. 88%, respectively). Overall, cows with P4 <1 ng/mL at the first PGF treatment had fewer P/AI than cows with P4 ≥1 ng/mL (27% vs. 38%), whereas cows with P4 ≥0.4 ng/mL at G2 had fewer P/AI than cows with P4 <0.4 ng/mL (15% vs. 38%). We conclude that adding a second PGF treatment 24 h after the first within a Resynch protocol tended to increase the proportion of cows undergoing complete luteal regression and P/AI, whereas treatment with a double dose of PGF at a single time did not.  相似文献   

4.
The objectives were to determine the effects of PGF treatment on the prevalence of subclinical endometritis (SCE) and fertility of dairy cows. A total of 406 Holstein cows (167 primiparous and 239 multiparous) from 5 herds were used. Uterine lavage for diagnosis of SCE, PGF treatment, evaluation of body condition scores (BCS), and collection of blood samples for estrous cyclicity determination were performed at 21, 35, and 49 d in milk (DIM). Polymorphonuclear cells (PMN) were quantified and thresholds for diagnosing SCE were selected by receiver operating characteristics analysis. Cows classified as having SCE at 35 DIM (≥6.5% PMN) and 49 DIM (≥4.0% PMN) had increased time to pregnancy; however, cows classified as having SCE at 21 DIM (≥8.5% PMN) did not. Median days to pregnancy were delayed by 30 (151 vs. 121 d) and 40 (169 vs. 129) d for cows classified as having SCE at 35 and 49 DIM, respectively. Treatment with PGF did not affect the prevalence of SCE either at 35 (37.9 vs. 38.4%) or at 49 DIM (34.0 vs. 40.4%). Treatment with PGF did not affect time to first insemination (AI; median 76 DIM for cows treated with PGF; 79 DIM for control. Nonetheless, PGF treatment increased pregnancy to first AI in all the cows (35.5 vs. 24.1%) and hazard ratio (HR) of pregnancy in cows with BCS ≤2.5 when all of the cows were evaluated (HR = 1.5; 95% confidence interval; CI = 1.1 to 2.0) and when only cows without SCE were evaluated (HR = 1.8; 95% CI = 1.2 to 2.7). Treatment with PGF did not affect the hazard of pregnancy in cows with SCE at 49 DIM (HR = 0.9; 95% CI = 0.6 to 1.3). In these farms, treatment with PGF did not affect SCE or time to first insemination, but did increase first-service pregnancy per AI and decreased time to pregnancy in cows with low BCS.  相似文献   

5.
The objective of this research was to increase the proportion of cows with at least 1 functional corpus luteum (CL) and elevated progesterone at the onset of the timed artificial insemination (TAI) protocol. Postpartum Holstein cows in one herd were stratified by lactation number at calving (September 2009 through August 2010) and assigned randomly to 2 treatments: 1) Presynch-10 (n=105): two 25-mg injections of PGF(2α) (PG) 14 d apart (Presynch); and 2) PG-3-G (n=105): one 25-mg injection of PG 3 d before 100-μg GnRH (Pre-GnRH) injection, with the PG injection administered at the same time as the second PG injection in the Presynch-10 treatment. Cows were enrolled in a TAI protocol [Ovsynch; injection of GnRH 7 d before (GnRH-1) and 56 h after (GnRH-2) PG injection with AI 16 to 18 h after GnRH-2] 10 d after the second or only PG injection. Blood samples for progesterone or estradiol analyses were collected on median days in milk (DIM): 36, 39, 50, 53 (Pre-GnRH), 60 (GnRH-1), 67 (PG), 69 (GnRH-2), and 70 (TAI). Ovarian structures were measured by ultrasonography on median DIM 53, 60, 67, 69, and 6 d post-TAI to determine follicle diameters, ovulation response to GnRH, or both. Although progesterone concentration did not differ between treatments before Pre-GnRH injection, the proportion of cows with at least 1 CL tended to be greater for PG-3-G than Presynch-10 cows, and more PG-3-G cows ovulated after Pre-GnRH injection than ovulated spontaneously in Presynch-10. Further, the diameter of follicles that ovulated tended to be smaller in PG-3-G than in Presynch-10 cows after Pre-GnRH injection. At GnRH-1, the proportion of cows with progesterone ≥1 ng/mL, the number of CL per cow, and the proportion of cows with at least 1 CL were greater for PG-3-G than Presynch-10. Neither follicle diameter nor percentage of cows ovulating after GnRH-1 differed between treatments. At PG injection during the week of TAI, progesterone concentration and the proportion of cows with progesterone ≥1 ng/mL tended to be greater for PG-3-G than Presynch-10, and PG-3-G had more CL per cow than Presynch-10. No ovarian characteristics differed between treatments after GnRH-2, including progesterone concentration, number of CL per cow, and total luteal volume 7 d after GnRH-2. Many of the previous ovarian traits were improved in both ovular and anovular cows after PG-3-G compared with Presynch-10. Pregnancies per AI at d 32 and 60 were only numerically greater for PG-3-G than for Presynch-10 cows, largely because of differences detected during months without heat stress. We concluded that the PG-3-G treatment increased ovulation rate and luteal function 7 d before the onset of Ovsynch, resulting in improved follicular synchrony and predisposing potentially greater pregnancies per AI in lactating dairy cows.  相似文献   

6.
《Journal of dairy science》2023,106(7):5115-5126
This study aimed to determine the effect of 2 simple breeding strategies combining artificial insemination (AI) after detection of estrus (AIED) and timed AI (TAI) on first-service fertility in lactating Holstein cows. Weekly, lactating Holstein cows (n = l,049) between 40 and 46 d in milk (DIM) were randomly assigned to initiate 1 of 2 breeding strategies for first service: Presynch-14 and PG+G. Presynch-14 is a presynchronization strategy with 2 PGF treatments 14 d apart with the last PGF 14 d before the initiation of the Ovsynch protocol. Cows treated with PG+G receive a simpler presynchronization program that uses PGF and GnRH simultaneously 7 d before Ovsynch. In both treatments, cows detected in standing estrus by tail chalk at any time ≥55 DIM were inseminated, and treatment was discontinued (n = 525). Cows completing treatment received TAI from 78 to 84 DIM (n = 526). In a subgroup of cows that received TAI, blood was collected (n = 163) to assess circulating concentrations of progesterone, and ultrasonographic evaluations of ovaries were performed on the day of first GnRH of Ovsynch (n = 162) and PGF of Ovsynch (n = 122). The proportion of cows that received TAI was greater for PG+G compared with Presynch-14 (63.5 vs. 31.9%), which increased DIM at first service for cows treated with PG+G compared with Presynch-14 (75.5 ± 0.4 vs. 68.7 ± 0.4). For cows receiving TAI, the ovulatory response to first GnRH of Ovsynch (73.8 vs. 48.8%) and the proportion of cows with functional corpora lutea (92.6 vs. 73.1%) were greater for PG+G than Presynch-14. Cows treated with PG+G had greater overall pregnancy per AI (P/AI) 42 ± 7 d after AI (40.2 vs. 33.6%) and calving per AI (32.1 vs. 25.2%) than Presynch-14. For cows receiving AIED, treatment did not affect P/AI 42 ± 7 d after AI. However, for cows receiving TAI, PG+G increased P/AI compared with Presynch-14 (44.6 vs. 35.2%). Overall, cows receiving TAI had greater P/AI 42 ± 7 d after AI (42.5 vs. 31.5%) and calving per AI (34.1 vs. 23.7%) and decreased pregnancy loss (16.8 vs. 25.2%) than cows receiving AIED. In summary, PG+G increased the proportion of cows receiving TAI and the DIM at first service, P/AI, and calving per AI compared with Presynch-14 when both TAI programs were combined with AIED.  相似文献   

7.
The objective of this study was to evaluate the quality and comparability of published literature, and to summarize the effect of prostaglandin F(2α) (PGF(2α)) for the treatment of endometritis. It has been postulated that there is a dearth of high-level evidence-based research results in veterinary medicine. Also, there is a marked variation in the quality of studies in veterinary and animal science. Post-partum uterine infections occur commonly in dairy cattle and are reported to have a negative impact on reproductive performance. A comprehensive literature search was conducted utilizing online databases revealing a total of 2723 references. After applying specific exclusion criteria, a total of 68 trials were eligible for further analysis. These articles were evaluated utilizing specific parameters listed in an evaluation form such as randomization and the involvement of control groups. The analysis revealed that more than half of the trials (51·5%) were at least 20 years old. Furthermore, we found that about one third (36·8%) of all trials were controlled and randomized, while 3 of those (4·4%) were also blinded. Of those trials which calculated a calving-to-conception interval (n=30), 50% of the authors claimed an improvement, which was statistically significant in 23·3% of the cases. We conclude that there is a wide discrepancy between research results investigating the efficacy of PGF(2α).  相似文献   

8.
Progesterone-containing devices can be inserted intravaginally for 14 d to presynchronize the estrous cycle for timed artificial insemination (TAI) in beef heifers ("14-day CIDR-PG" or "Show-Me-Synch" program). The progesterone treatment is effective for presynchronization because cattle develop a persistent dominant follicle during treatment that ovulates within 3 d after progesterone removal. The subsequent estrous cycle can be effectively used for a TAI program. Some cattle will retain a functional corpus luteum (CL) for the entire 14-d treatment period and will not be synchronized effectively because the interval to ovulation depends on the lifespan of their existing CL. The objective was to test the effect of a luteolytic dose of PGF(2α) at progesterone removal for improving synchrony of estrus after treatment and increasing conception rate to a subsequent TAI in dairy cows. Postpartum cows (n = 1,021) from 2 grazing dairy herds were assigned to 1 of 2 presynchronization programs that used a controlled internal drug releasing (CIDR) device containing progesterone: 14dCIDR (CIDR in, 14 d, CIDR out; n = 523) or 14dCIDR+PGF(2α) (CIDR in, 14 d, CIDR out, and PGF(2α); n = 498). Cows were body condition scored (BCS; 1 to 5, thin to fat) and tail painted at CIDR removal. Paint score (PS) was recorded after CIDR removal [PS = 0 (all paint removed, indication of estrus), PS = 3 (paint partially removed), or PS = 5 (no paint removed; indication of no estrus)]. At 19 d after CIDR removal, all cows were treated with PGF(2α), 56 h later treated with GnRH, and then 16 h later were TAI. Treating cows with PGF(2α) at CIDR removal increased the percentage with PS = 0 within 5 d (58.1% vs. 68.9%; 14dCIDR vs. 14dCIDR+PGF(2α)). We found no effect of treatment, however, on conception rate at TAI (41.1% vs. 43.6%; respectively). The TAI conception rate increased with increasing BCS and was greater for cows that had PS = 0 within 5 d after CIDR removal. In summary, treating cows with PGF(2α) at CIDR removal increased the percentage of cows with all tail paint removed but did not increase percentage of pregnant cows after TAI.  相似文献   

9.
《Journal of dairy science》2023,106(1):755-768
Our objective was to evaluate the effect of 3 different Ovsynch protocols on progesterone (P4) and pregnancies per artificial insemination (P/AI), where all cows received a P4 releasing intravaginal device (PRID) from d 0 until d 8. We hypothesized that (1) both modified PGF treatments lead to decreased P4 at the second GnRH treatment (G2), resulting in greater P/AI, (2) the treatment effect is influenced by the presence of a corpus luteum (CL) at the beginning of the protocol, and (3) potential vaginal discharge caused by the PRID does not have a negative influence on fertility. Lactating Holstein cows (n = 1,056) were randomly assigned to 1 of 3 treatment groups on a weekly basis (n = 356; control: d 0, 100 µg of GnRH + PRID; d 7, 25 mg of dinoprost; d 8, PRID removal; d 9, 100 µg of GnRH). Cows in the second group (n = 353) received an Ovsynch protocol with a double dose of PGF (DoubleDose: d 0, 100 µg of GnRH + PRID; d 7, 50 mg of dinoprost; d 8, PRID removal; d 9, 100 µg of GnRH). Cows in the third group (n = 347) received an Ovsynch protocol with a second PGF treatment 24 h after the first one (2PGF: d 0, 100 µg of GnRH + PRID; d 7, 25 of mg dinoprost; d 8, 25 mg of dinoprost and PRID removal; d 9, 100 µg of GnRH). All cows had their ovaries scanned to determine the presence of a CL at the beginning of the Ovsynch protocol. Vaginal discharge score (VS) was evaluated at PRID removal. All cows received timed artificial insemination approximately 16 h after G2. Pregnancy diagnosis was performed via transrectal ultrasonography (d 38 ± 3 after timed artificial insemination) and rechecked on d 80 ± 7 after timed artificial insemination. Blood samples were collected on d 0, 7, and 9 of the protocol to determine P4 concentrations. Treatment affected P4 at G2. Progesterone was lower for 2PGF and DoubleDose cows compared with cows in the control group (control 0.35 ± 0.02 ng/mL; DoubleDose 0.29 ± 0.02 ng/mL; 2PGF 0.30 ± 0.02 ng/mL). Overall, P/AI did not differ among treatments. We found, however, an interaction between treatment and CL at the first GnRH treatment. Cows lacking a CL at the first GnRH treatment in the 2PGF group had greater P/AI (47.9%) compared with the same type of cows in the DoubleDose group (32.7%). We observed an effect of VS on P4 concentration at d 7. We found an increase in P4 with greater VS. Vaginal discharge score at PRID removal tended to have a positive effect on P/AI at d 38 (VS0: 36.5%; VS1: 41.3%; VS2: 49.7%). In conclusion, the addition of a second PGF treatment on d 7 and 8 of a 7-d Ovsynch protocol increased luteal regression and decreased mean P4 at G2. Cows treated with PGF 2 times 24 h apart showed greater P/AI, compared with cows treated with an increased dose of PGF.  相似文献   

10.
We demonstrated that 50 mg of PGF on d 6 successfully induced luteolysis in lactating dairy cows enrolled in a traditional 5-d Ovsynch-72 program [GnRH injection 5 d before (d 0; GnRH-1) and 56 (p.m. on d 7; GnRH-2) or 72 h (d 8; GnRH-2) after a 25-mg injection of PGF (d 5 and 6 after GnRH injection); timed artificial insemination (AI) on d 8]. Our current objective was to determine pregnancy outcomes in lactating dairy cows after a 50-mg injection of PGF on d 6 or a 25-mg injection of PGF on d 5 and 6 in a 5-d Ovsynch program. Cows in herd 1 diagnosed not pregnant between 30 and 36 d since last AI were enrolled to receive either a 50-mg injection of PGF on d 6 (1 × 50; n = 134) or a 25-mg injection of PGF on d 5 and 6 (2 × 25; n = 139) after GnRH-1 (d 0), with GnRH-2 at 72 h after PGF injection (d 5), concurrent with timed AI (d 8). Cows in herd 2 diagnosed not pregnant between 34 and 40 d were treated similarly: even-tagged cows received the 2 × 25 (n = 422) treatment, and odd-tagged cows received the 1 × 50 (n = 450) treatment, except that GnRH-2 was administered at 56 h. Blood collected from cows in herd 1 at d 0, 5, 6, and 8 was assayed for progesterone. Luteolysis was defined to occur when progesterone concentration was ≥1 ng/mL on d 5, and 72 h later (d 8) was either <0.5 ng/mL or <1 ng/mL. Progesterone concentrations did not differ between treatments on pretreatment d 0 and 5, but were greater in 1 × 50 than 2 × 25 cows on d 6 (4.7 ± 0.2 vs. 1.1 ± 0.2 ng/mL) and d 8 (0.43 ± 0.04 vs. 0.19 ± 0.04 ng/mL), respectively. Luteolysis was greater in the 2 × 25 versus 1 × 50 treatment when the cut point was 0.5 ng/mL, whereas no difference was detected when the cut point was <1 ng/mL on d 8. Lack of complete luteolysis was greater in cows classified as early cycle on d 0 or having a new corpus luteum after d 0 because progesterone concentration was greater on d 5 and 6 than for cows classified as late cycle on d 0 or cows having low progesterone on d 0 and 5. Pregnancy per AI at 30 to 40 d did not differ between 2 × 25 and 1 × 50 cows having luteolysis by d 8 or in all cows (37.2 vs. 33.3%) in herd 1, respectively, but differed in herd 2 (24.7 vs. 19.5%; no treatment by herd interaction). We conclude that incomplete luteolysis by d 8 was greater in 1 × 50 cows using a cut point of <0.5 ng/mL at AI. The difference in pregnancy outcome in herd 2 may have resulted from insufficient time for complete luteolysis before GnRH-2 at 56 h compared with GnRH-2 at 72 h (at AI) in herd 1.  相似文献   

11.
Free fatty acid receptors (FFAR) play significant roles in various physiological processes, including energy metabolism, through interaction with their ligands, fatty acids. To determine whether the receptors FFAR1 and FFAR2 are involved in the regulation of liver metabolism during the peripartal period, we selected 13 German Holstein multiparous dairy cows and grouped them as high β-hydroxybutyrate (H-BHB; n = 8) or low β-hydroxybutyrate (L-BHB; n = 5) according to their individual maximum plasma BHB concentration observed within wk 2 or 3 postpartum (H-BHB: >1 mmol/L and L-BHB: <0.77 mmol/L). The selected cows had a milk yield of more than 10,000 kg/305 d during a previous lactation. The cows were fed a total mixed ration according to their requirements during the far-off dry period [5.9 MJ of net energy for lactation (NEL)/kg of dry matter (DM), crude protein (CP) 126 g/kg of DM], close-up dry period (6.5 MJ of NEL/kg of DM, CP 137 g/kg of DM), and lactation (7 MJ of NEL/kg of DM, CP 163 g/kg of DM). Blood samples were taken weekly, from d ?34 to d 40 relative to parturition. Liver biopsies were taken on d ?34, ?17, 3, 18, and 30 relative to parturition and at slaughter (d 40). The protein abundance of FFAR1 was lower during the whole peripartal period in the H-BHB group. The abundance of FFAR2 increased over time and tended to be higher in H-BHB cows. The abundance of FFAR1 might be associated with imbalances of liver metabolism in peripartal dairy cows.  相似文献   

12.
Several smoking conditions were examined with the objective of enhancing the numbers of lactic acid bacteria (LAB) by natural means in vacuum-packaged cold-smoked salmon during 21 days of storage at 5 degrees C. Three combinations of salting, drying, and smoking were used: (i) dry salting x time of salting (2 or 6 h); (ii) wet salting (6 h) x dry salting (6 h) x with or without sugar; and (iii) wet salting (6 h) x dry salting (6 h) x different times of smoking (2 or 6 h of drying and 2 or 6 h of smoking). Two batches were processed for each set of conditions. Determinations of pH and salt content in the water phase were carried out for products in each treatment. Microbiological analyses (total viable count, total LAB, Lactobacillus spp., and Enterobacteriaceae) also were conducted at the beginning of storage (t0) and after 21 days of refrigerated storage (tl). There were differential increases in total LAB and lactobacilli during the storage period according to the treatment performed. The most effective treatment to enhance LAB growth was 6 h of dry salting with sugar, 6 h of drying, and 2 h of smoking. These salting-drying-smoking conditions also selected the LAB as the dominant flora at the end of the storage period. The LAB promoted by these processing parameters seem to be potentially useful protective cultures because of their anti-Listeria activity. From the results of this research, we conclude that it is possible to enhance the growth of LAB in general and that of inhibitory strains in particular by suitable choices of processing parameters.  相似文献   

13.
14.
Corchorus olitorius leaf is consumed in various parts of the world as leafy vegetable and folk remedy for the management of some degenerative diseases with dearth of information on its biochemical rationale. Therefore, this study sought to characterize the inhibitory action of polyphenol-rich extracts (free and bound) of C. olitorius on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE), as well as to identify the phenolic compound responsible for these activities. Our findings revealed that the extracts inhibited α-amylase and α-glucosidase (12.5–50.0 μg/mL), and ACE (10.0–50.0 μg/mL) in dose-dependently with free extracts having significantly (P < 0.05) higher α-amylase (17.5 μg/mL), α-glucosidase (11.4 μg/mL) and ACE (15.7 μg/mL) inhibitory activities as revealed by the IC50. Reversed-phase HPLC analysis of the extracts revealed chlorogenic acid (7.5 mg/100 g) and isorhamnetin (51.1 mg/100 g) as the main phenolics in the free extract and caffeic acid (58.1 mg/100 g) in the bound extract. Therefore, the enzyme inhibitory activity of C. olitorius extracts may be attributed to the presence of caffeic acid, chlorogenic acid and isorhamnetin, thus justifying its use in folklore for the management of diabetes and hypertension.  相似文献   

15.
16.
Marine mussels can develop hemeic and gonadal neoplasia in the natural environment. Associated with these diseases are the tumor suppressor (TS) p53 and the proto-oncogene ras coded proteins, both of which are highly conserved among molluscs and vertebrates. We report, for the first time, tissue-specific expression analysis of p53 and ras genes in Mytilus edulis by means of quantitative RT-PCR. A tissue-specific response was observed after 6 and 12 days exposure to a sublethal concentration of a model Polycyclic Aromatic Hydrocarbon (PAH), benzo(α)pyrene (B(α)P). This sublethal concentration (56 μg/L) was selected based on an integrated biomarker analysis carried out prior to gene expression analysis, which included a 'clearance rate' assay, histopathological analysis, and DNA strand break measurements. The results indicated that the selected concentration of B(α)P can lead to the induction of DNA strand breaks, tissue damage, and expression of tumor-regulating genes. Both p53 and ras are expressed in a tissue-specific manner, which collaborate with tissue-specific function in response to genotoxic stress. The integrated biological responses in Mytilus edulis strengthen the use of this organism to investigate the fundamental mechanism of development of malignancy in invertebrate which could be translated to other organisms including humans.  相似文献   

17.
In Longissimus muscle from a F(2) population of Duroc×Berlin Miniature Pigs, micro-structural fibre traits and fatty acid composition were investigated to calculate correlation coefficients between these traits and meat quality. The animals of the F(2) population exhibited low carcass weight (55.7±11.2 kg), low meat percentage (35.0±8.4%) but a relatively high intramuscular fat content (3.52±1.44%) compared to pure bred animals (F(0)). No unacceptable meat quality was observed. The variation coefficients of carcass composition, muscle fibre traits, and fat traits were high enough to allow the analysis of candidate genes which influence the growth of muscle fibres, fat cells, and meat quality. Phenotypic correlation coefficients between muscle fibre characteristics and meat quality traits were low whereas fatty acid composition and meat quality were more closely related. The correlation coefficients between muscle fibre traits and fatty acid composition ranged from 0.10 to 0.40. The relationship between a low quotient of n-6/n-3 fatty acids in muscle and greater fibre sizes, higher percentages of the oxidative fibre type and higher capillary density was noteworthy indicating good conditions for muscle growth and meat quality.  相似文献   

18.
The aromatic composition of two different species of truffles (black and summer) was evaluated by gas chromatography–olfactometry (GC–O). Volatiles released by the truffles at 25 °C for 7.5 h were collected in a trapping system consisting of 400 mg of LiChrolut EN kept at 0 °C and further eluted with dichloromethane/methanol (95:5). The extract was analysed by two different GC–O strategies: (1) a semiquantitative GC–O study using a panel composed of nine individuals, (three of them truffle experts) and (2) an AEDA (aroma extract dilution analysis) experiment with a small panel of two judges. The results show that the aroma emitted by a typical black truffle is due to at least 17 different aroma molecules, six of which are reported for the first time: 1-hexen-3-one, 2-methyl-3-furanthiol, furaneol, 3-ethylphenol, 3-propylphenol and 5-methyl-2-propylphenol. The most important aroma compounds of black truffle aroma are 2,3-butanedione, dimethyl disulphide (DMDS), ethyl butyrate, dimethyl sulphide (DMS), 3-methyl-1-butanol and 3-ethyl-5-methylphenol. Quantitatively, black truffle emits mostly 3-ethyl-5-methylphenol (more than 50% of the total aroma molecules emitted), 5-methyl-2-propylphenol, β-phenylethanol and 3-ethylphenol. In the case of summer truffle, the most important aroma molecules are DMS, DMDS, methional, 3-methyl-1-butanol, 1-hexen-3-one and 3-ethylphenol. From the quantitative point of view, summer truffle emits mainly β-phenylethanol, DMS and 3-ethylphenol, but the emission is up to 100 times less than that of black truffles.  相似文献   

19.
The size-dependent bioavailability of hematite (α-Fe(2)O(3)) nanoparticles to obligate aerobic Pseudomonas mendocina bacteria was examined using the natural siderophore-producing wild type strain and a siderophore(-) mutant strain. Results showed that Fe from hematite less than a few tens of nm in size appears to be considerably more bioavailable than Fe associated with larger particles. This increased bioavailability is related to the total available particle surface area, and depends in part on greater accessibility of the Fe to the chelating siderophore(s). Greater bioavailability is also related to mechanism(s) that depend on cell/nanomineral proximity, but not on siderophores. Siderophore(-) bacteria readily acquire Fe from particles <10 nm but must be in direct physical proximity to the nanomineral; the bacteria neither produce a diffusible Fe-mobilizing agent nor accumulate a reservoir of dissolved Fe in supernatant solutions. Particles <10 nm appear to be capable of penetrating the outer cell wall, offering at least one possible pathway for Fe acquisition. Other cell-surface-associated molecules and/or processes could also be important, including a cell-wall associated reducing capability. The increased bioavailability of <10 nm particles has implications for both biogeochemical Fe cycling and applications involving engineered nanoparticles, and raises new questions regarding biogenic influences on adsorbed contaminants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号