首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The somatotropic axis [including growth hormone (GH), GH receptor, and insulin-like growth factor (IGF)-I] is uncoupled in high-producing cows in early lactation so that the liver fails to respond to GH and produces less IGF-I. This uncoupling was implicated in the process of nutrient partitioning, enabling high milk production. Different genetic selection goals may affect functional components of the somatotropic axis. Thus, the somatotropic axis was examined in diverse genetic strains of dairy cows [North American Holstein 1990 (NA90), New Zealand Holstein-Friesian 1990 (NZ90), and New Zealand Holstein-Friesian 1970 (NZ70)] that were managed similarly within a pasture-based system but were offered feed allowances commensurate with their genetic ability to produce milk. The NA90 cows produced more milk (26.2 ± 0.3, 24.1 ± 0.3, and 20.1 ± 0.4 kg/d, for NA90, NZ90, and NZ70, respectively), but had lower milk fat percentages (4.28 ± 0.03, 4.69 ± 0.03, and 4.58 ± 0.04 kg/d for NA90, NZ90, and NZ70, respectively) compared with both NZ strains. Milk protein percentages (3.38 ± 0.02, 3.52 ± 0.02, and 3.29 ± 0.03 kg/d for NA90, NZ90, and NZ70, respectively) were greater for NZ90 cows. During early lactation (wk 2 to 6), the total net energy produced in milk was greater in NA90 compared with NZ90 or NZ70 cows, but total net energy in milk after wk 6 was equivalent for NA90 and NZ90 cows. The greater milk production in early lactation in NA90 cows was associated with lower body condition scores (BCS; 1 to 10 scale; 4.0 ± 0.1) elevated blood GH concentrations (1.6 ± 0.1 ng/mL), and low blood IGF-I concentrations (14.8 ± 1.1 ng/mL), indicating an uncoupled somatotropic axis. In comparison, the NZ70 cows retained a coupled somatotropic axis during early lactation, maintaining greater BCS (4.6 ± 0.1), lower blood GH (0.7 ± 0.1 ng/mL), and greater blood IGF-I (21.9 ± 1.2 ng/mL). The degree of uncoupling in NZ90 cows was intermediate between the other 2 strains. Additional feed allowance failed to change blood IGF-I concentrations in NA90 cows but increased IGF-I concentrations in NZ90 cows (20.9 ± 1.4 and 13.2 ± 1.4 ng/mL for the high and low feed allowance, respectively). Furthermore, additional feed allowance in NZ90 cows lessened BCS loss in early lactation, but did not affect BCS loss in NA90 cows. Functional components of the somatotropic axis differed for the respective strains and were consistent with strain differences in milk production, BCS, and feed allowance.  相似文献   

2.
The objective of this study was to determine whether the physiological response to an intravenous glucose challenge would be affected by genetic strain or concentrate supplementation in grazing Holstein-Friesian cows in early lactation. North American (NA; n = 30) or New Zealand (NZ; n = 30) cows were randomly allocated to 1 of 3 feeding treatments. All cows were offered a generous pasture allowance, and 4 of the 6 groups received either 3 or 6 kg of dry matter (DM)/cow per day of concentrates. During wk 5 of lactation, all cows underwent an intravenous glucose challenge. Cows of NA origin produced more milk than NZ cows, but there was no significant strain effect on milk fat or protein yield. Milk yield and the yield of individual components increased with increasing level of concentrate eaten, but there were no significant strain × diet interactions. During wk 1 to 6, mean body weight and body condition score decreased in all treatments. Average body weight was greater in NA cows, but body condition score was greater for NZ cows. There was no strain or diet effect on the length of the postpartum anovulatory interval, with cows ovulating before 40 d postpartum on average. Glucose fractional turnover rate was greater in NZ cows compared with those of NA origin and in all cows receiving 6 kg of DM concentrates, indicating a less severe insulin resistance in those treatments. Consistent with this, the time taken to dispose of half the peak glucose concentration was less when 6 kg of DM concentrate was fed, and tended to be less in NZ than in NA cows. There was no effect of genetic strain on glucose area under the curve (AUC) at 60 or 120 min, but AUC at both time points was less in cows receiving 6 kg of DM concentrates per day. Neither genetic strain nor nutrition affected basal or peak insulin concentrations, insulin increment, or insulin AUC, and there were no strain × diet interactions for any of the glucose challenge response variables measured. In conclusion, differences in milk production between NA and NZ cows in early lactation can, at least in part, be explained by the greater degree of insulin resistance in the NA cows, and this insulin resistance can be overcome by supplementing grazing cows with 6 kg of DM concentrates.  相似文献   

3.
Fifty-six genetically divergent New Zealand and North American Holstein-Friesian (HF) cows grazed pasture, and were offered 0, 3, or 6 kg of concentrate DM/cow per day for an extended lactation (605 ± 8.3 d in milk; mean ± standard error of the mean). Weekly blood samples collected from individual cows from wk 1 to 10 postpartum (early lactation), and from wk 47 to 63 postpartum (extended lactation) were analyzed for nonesterified fatty acids (NEFA), glucose, insulin, leptin, growth hormone (GH), insulin-like growth factor-I (IGF-I), calcium, and urea. During early lactation, NEFA and GH concentrations were greater and IGF-I concentrations were less, and increased at a slower rate in North American HF. During this 10-wk period, there were no strain effects on plasma glucose, leptin, insulin, or calcium. During the extended lactation period, North American HF had greater NEFA and GH concentrations; there were strain × diet interactions for insulin and leptin, and a tendency for a strain × diet interaction for glucose. These interactions were primarily due to greater plasma insulin, leptin, and glucose concentrations in the New Zealand HF fed 6 kg of concentrate DM/cow per day, a result of excessive body condition in this treatment. In this period, there was no strain effect on plasma IGF-I, calcium, or urea concentration. During early lactation, there was a linear increase in glucose and IGF-I, and a linear decrease in GH and urea with increasing concentrate in the diet. However, plasma calcium, NEFA, insulin, and leptin remained unchanged. During the extended lactation period, there was an effect of feed supplementation on GH and urea, which decreased linearly with increasing concentrate in the diet. There was, however, no supplementation effect on NEFA, calcium, or IGF-I. These data indicate potential strain differences in recoupling of the somatotropic axis, insulin resistance, and energy partitioning, and may help explain the physiology behind the previously reported greater milk production and body condition score loss in North American HF. The results have implications for breeding and diet management during an extended lactation.  相似文献   

4.
Continuous selection of dairy cows for production traits may alter the regulation of metabolic pathways. High-producing North American (NA) cows produce more milk and have a larger degree of somatotropic axis uncoupling than less intensively selected New Zealand (NZ) cows. The objective of this study was to determine if production-based selection priorities (i.e., NA cows) have altered the regulation of the gluconeogenic pathway relative to selection priorities based on production traits (i.e., NZ cows). In this study conducted in New Zealand, NZ (n=27) and NA cows (n=27) were monitored from 1 wk before calving to 12 wk post-calving. Cows were pasture-fed and supplemented with 0, 3, or 6 kg of concentrate DM/d. Liver biopsy samples were collected at 0, +1, and +4 wk relative to calving (WRTC) for mRNA analysis. Milk production of NA cows was greater during wk 5 to 11 postpartum and concentrate supplementation increased milk production for both NA and NZ cows. No genotype (NA vs. NZ) by diet interaction occurred for blood glucose, NEFA, or insulin. Expression of pyruvate carboxylase (PC) mRNA was increased at +1 and +4 WRTC compared with 0 WRTC (3.04 and 2.42 vs. 1.25±0.13 arbitrary units, respectively: mean ± standard error of the means) and expression of cytosolic phosphoenolpyruvate carboxykinase mRNA was increased at +4 compared with calving and +1 WRTC (4.78 vs. 2.18 and 2.48±1.41 arbitrary units, respectively). Expression of PC mRNA tended to be greater in NZ cows and tended to decrease with concentrate supplementation in both NZ and NA cows. The responses of NZ and NA cows to the transition to lactation and concentrate supplementation appeared to be similar; however, NZ cattle had a higher basal expression of PC.  相似文献   

5.
The liver has an important role in metabolic regulation and control of the somatotropic axis to adapt successfully to physiological and environmental changes in dairy cows. The aim of this study was to investigate the adaptation to negative energy balance (NEB) at parturition and to a deliberately induced NEB by feed restriction at 100 days in milk. The hepatic gene expression and the endocrine system of the somatotropic axis and related parameters were compared between the early and late NEB period. Fifty multiparous cows were subjected to 3 periods (1 = early lactation up to 12 wk postpartum, 2 = feed restriction for 3 wk beginning at around 100 days in milk with a feed-restricted and a control group, and 3 = subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, plasma growth hormone reached a maximum in early lactation, whereas insulin-like growth factor-I (IGF-I), leptin, the thyroid hormones, insulin, and the revised quantitative insulin sensitivity check index increased gradually after a nadir in early lactation. Three days after parturition, hepatic mRNA abundance of growth hormone receptor 1A, IGF-I, IGF-I receptor and IGF-binding protein-3 (IGFBP-3) were decreased, whereas mRNA of IGFBP-1 and -2 and insulin receptor were upregulated as compared with wk 3 antepartum. During period 2, feed-restricted cows showed decreased plasma concentrations of IGF-I and leptin compared with those of control cows. The revised quantitative insulin sensitivity check index was lower for feed-restricted cows (period 2) than for control cows. Compared with the NEB in period 1, the changes due to the deliberately induced NEB (period 2) in hormones were less pronounced. At the end of the 3-wk feed restriction, the mRNA abundance of IGF-I, IGFBP-1, -2, -3, and insulin receptor was increased as compared with the control group. The different effects of energy deficiency at the 2 stages in lactation show that the endocrine regulation changes qualitatively and quantitatively during the course of lactation.  相似文献   

6.
Differences in genetic selection criteria for dairy cows internationally have led to divergence in the Holstein-Friesian breed. The objective of this study was to compare hepatic expression of genes of the somatotropic axis in the North American Holstein-Friesian and the New Zealand Holstein-Friesian strains of dairy cow at early and mid lactation. Mature cows of both the North American Holstein-Friesian (n = 10) and New Zealand Holstein-Friesian (n = 10) strains were selected. Liver tissue was collected by percutaneous punch biopsy from all cows at 35 and 140 d postpartum, representing early and mid lactation, respectively. Total RNA was extracted and the hepatic expression of genes involved in the control of the somatotropic axis was examined. Abundance of insulin-like growth factor (IGF)-1 mRNA was greater in the New Zealand strain, concomitant with a tendency for increased expression of acid-labile subunit mRNA. Across strains, mRNA abundance of IGF-binding protein-1, IGF-binding protein-2, and growth hormone receptor 1A decreased from d 35 to 140 postpartum, whereas expression of IGF-1 and acid-labile subunit tended to increase. Abundance of suppressor of cytokine signaling-3 mRNA was increased at d 140 postpartum. Both the strain of Holstein-Friesian cow and the stage of lactation influenced expression of genes controlling the somatotropic axis in hepatic tissue.  相似文献   

7.
Data from 113 lactations across 76 cows between the years 2002 to 2004 were used to determine the effect of strain of Holstein-Friesian (HF) dairy cow and concentrate supplementation on milk production, body weight (BW), and body condition score (BCS; 1 to 5 scale) lactation profiles. New Zealand (NZ) and North American (NA) HF cows were randomly allocated to 1 of 3 levels of concentrate supplementation [0, 3, or 6 kg of dry matter (DM)/cow per d] on a basal pasture diet. The Wilmink exponential model was fitted within lactation (YDIM = a + b e(−0.05 × DIM) + c × DIM). The median variation explained by the function for milk yield was 86%, between 62 and 69% for milk composition, and 80 and 70% for BW and BCS, respectively. North American cows and cows supplemented with concentrates had greater peak and 270-d milk yield. Concentrate supplementation tended to accelerate the rate of incline to peak milk yield, but persistency of lactation was not affected by either strain of HF or concentrate supplementation. No significant strain by diet interaction was found for parameters reported. New Zealand cows reached nadir BCS 14 d earlier and lost less BW (22 kg) postcalving than NA cows. Concentrate supplementation reduced the postpartum interval to nadir BW and BCS, and incrementally increased nadir BCS. New Zealand cows gained significantly more BCS (i.e., 0.9 × 10−3 units/d more) postnadir than NA cows, and the rate of BCS replenishment increased linearly with concentrate supplementation from 0.5 × 10−3 at 0 kg of DM/d to 0.8 × 10−3 and 1.6 × 10−3 units/d at 3 and 6 kg of DM/d concentrates, respectively. Although there was no significant strain by diet interaction for parameters reported, there was a tendency for a strain by diet interaction in 270-d BCS, suggesting that the effect of concentrate supplementation on BCS gain was, at least partly, strain dependent.  相似文献   

8.
9.
Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor, and a potent orexigenic agent in human and rodent studies. We hypothesized that ghrelin may play a role in the reduced grazing time in dairy cows receiving supplementary feeds. Fifty-eight Holstein-Friesian (HF) dairy cows of New Zealand (NZ; n = 28) and North American (NA; n = 30) ancestry were provided with unrestricted access to pasture and randomly allocated at calving to either 0, 3, or 6 kg of dry matter concentrates in a 2 × 3 factorial arrangement. Concentrates were offered in equal amounts at each milking. In peak lactation (75 and 79 ± 19.7 d in milk), blood was sampled from all cows prior to the a.m. milking (i.e., baseline) and following 2 h of unrestricted access to fresh pasture after the a.m. milking on 2 consecutive weeks. Daily milk yield and fat, protein, and lactose concentrations were measured on the day of blood sampling. North American cows produced more milk and consumed numerically more pasture than did NZ cows, and NA cows had elevated plasma ghrelin concentrations pre- and postfeeding. A negative association between dry matter intake and postprandial ghrelin concentrations indicated that other controlling factors may be involved. Circulating ghrelin concentrations before feeding were not affected by concentrate supplementation, but increasing supplementation was associated with a linear decline in pasture intake and postprandial ghrelin concentrations. This negative association between concentrate supplementation and plasma ghrelin concentrations offers a potential neuroendocrine basis for the reduced pasture intake when supplements are offered to cows in grazing systems.  相似文献   

10.
This experiment compared Holstein-Friesian (HF) cows of New Zealand (NZ) origin representative of genetics present in the 1970s (NZ70; n = 45) and 1990s (NZ90; n = 60), and a group of HF cows of North American origin with 1990s genetics (NA90; n = 60), which were managed in grazing systems with a range of feeding allowances (4.5 to 7.0 t/cow per yr) over 3 yr. The NZ70 cows had the lowest Breeding Worth genetic index and the lowest breeding values for yields of fat, protein, and milk volume; the NZ90 and NA90 cows were selected to have similar breeding values for milk traits and were representative of cows of high genetic merit in the 1990s. The NZ90 cows had a higher milk protein concentration (3.71%) than either the NA90 (3.43%) or the NZ70 cows (3.41%), and a higher milk fat concentration (4.86%) than the NA90 cows (4.26%) with a level similar to the NZ70 cows (4.65%). The NZ90 cows produced significantly greater yields of fat, protein, and lactose than the NA90 and NZ70 cows. The NZ70 cows had the lowest mean annual body weight (473 kg) but the highest body condition score (BCS; 5.06). Days in milk were the same for the 2 NZ strains (286 d in milk), both of which were greater than the NA90 cows (252 d in milk). There was no genotype × environment interaction for combined milk fat and protein yield (milksolids), with NZ90 producing 52 kg/cow more than the NA90 at all feeding levels. The NZ70 strain had the highest seasonal average BCS (5.06), followed by the NZ90 (4.51) and the NA90 (4.13) strains on a 1 to 10 scale. Body condition score increased with higher feeding levels in the 2 NZ strains, but not in the NA strain. The first-parity cows commenced luteal activity 11 d later than older cows (parities 2 and 3), and the NA90 cows commenced luteal activity 4 and 10 d earlier than the NZ70 and NZ90 cows. Earlier estrus activity did not result in a higher in-calf rate. The NZ70 and NZ90 cows had similar in-calf rates (pregnancy diagnosed to 6 wk; 69%), which were higher than those achieved by NA90 cows (54%). Results showed that the NA90 strain used in this experiment was not suitable for traditional NZ grazing systems. Grazing systems need to be modified if the NA90 strain is to be successfully farmed in NZ. The data reported here show that the NA90 cows require large amounts of feed, but this will not prevent them from having a lower BCS than the NZ strains. Combined with poor reproductive performance, this means that NA90 cows are less productive than NZ HF in pasture-based seasonal calving systems with low levels of supplementation.  相似文献   

11.
The effect of a grain-based concentrate supplement on fatty acid (FA) intake and concentration of milk FA in early lactation was investigated in grazing dairy cows that differed in their country of origin and in their estimated breeding value for milk yield. It was hypothesized that Holstein-Friesian cows of North American (NA) origin would produce milk lower in milk fat than those of New Zealand (NZ) origin, and that the difference would be associated with lower de novo synthesis of FA. In comparison, increasing the intake of concentrates should have the same effect on the FA composition of the milk from both strains. Fifty-four cows were randomly assigned in a factorial arrangement to treatments including 3 amounts of concentrate daily [0, 3, and 6 kg of dry matter (DM)/cow] and the 2 strains. The barley/steam-flaked corn concentrate contained 3.5% DM FA, with C18:2, C16:0, and C18:1 contributing 48, 18, and 16% of the total FA. The pasture consumed by the cows contained 4.6% DM FA with C18:3, C16:0, and C18:1 contributing 51, 10, and 10% of the FA, respectively. Pasture DM intake decreased linearly with supplementation, but total DM intake was not different between concentrate or strain treatments, averaging 16.2 kg of DM/cow, with cows consuming 720 g of total FA/d. Cows of the NA strain had lesser concentrations of milk fat compared with NZ cows (3.58 vs. 3.95%). Milk fat from the NA cows had lesser concentrations of C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0, and greater concentrations of cis-9 C18:1, C18:2, and cis-9, trans-11 C18:2, than NZ cows. These changes indicated that in milk from NA cows had a lesser concentration of de novo synthesized FA and a greater concentration of FA of dietary origin. Milk fat concentration was not affected by concentrate supplementation. Increasing concentrate intake resulted in linear increases in the concentrations of C10:0, C12:0, C14:0, and C18:2 FA in milk fat, and a linear decrease in the concentration of C4:0 FA. The combination of NA cows fed pasture alone resulted in a FA composition of milk that was potentially most beneficial from a human health perspective; however, this would need to be balanced against other aspects of the productivity of these animals.  相似文献   

12.
Shortening or omitting the dry period (DP) improves energy balance (EB) in early lactation because of a reduction in milk yield. Lower milk yield results in lower energy demands and requires less energy intake. The aim of this study was to evaluate the effects of DP length and concentrate level postpartum on milk yield, feed intake, EB, and plasma metabolites between wk ?4 and 7 relative to calving of cows of second parity or higher. Holstein-Friesian dairy cows (n = 123) were assigned randomly to 1 of 2 DP lengths: 0-d DP (n = 81) or 30-d DP (n = 42). Prepartum, cows with a 0-d DP received a lactation ration based on grass silage and corn silage (6.4 MJ of net energy for lactation/kg of dry matter). Cows with a 30-d DP received a dry cow ration based on grass silage, corn silage, and straw (5.4 MJ of net energy for lactation/kg of dry matter). Postpartum, all cows received the same basal lactation ration as provided to lactating cows prepartum. Cows with a 0-d DP were fed a low level of concentrate up to 6.7 kg/d based on the requirement for their expected milk yield (0-d DP-L; n = 40) or the standard level of concentrate up to 8.5 kg/d (0-d DP-S; n = 41), which was equal to the concentrate level for cows with a 30-d DP (30-d DP-S; n = 42) based on requirements for their expected milk yield. Prepartum dry matter intake, concentrate intake, basal ration intake, energy intake, plasma β-hydroxybutyrate (BHB), and insulin concentrations were greater and plasma free fatty acids (FFA) and glucose concentrations were lower, but EB was not different in cows with a 0-d DP compared with cows with a 30-d DP. During wk 1 to 3 postpartum, milk fat yield and plasma BHB concentration were lower and dry matter intake and concentrate intake were greater in cows with a 0-d DP compared with cows with a 30-d DP. During wk 4 to 7 postpartum, fat- and protein-corrected milk (FPCM), lactose content, and lactose and fat yield were lower in 0-d DP-L or 0-d DP-S cows compared with 30-d DP-S cows. Basal ration intake, EB, body weight, plasma glucose, and insulin and insulin-like growth factor-1 concentrations were greater and plasma FFA and BHB concentrations were lower in 0-d DP-L and 0-d DP-S cows compared with 30-d DP-S cows. Concentrate and energy intake were lower in 0-d DP-L cows than in 0-d DP-S or 30-d DP-S cows. Milk yield and concentrations of plasma metabolites did not differ in wk 4 to 7, although EB was lower in wk 6 and 7 postpartum in 0-d DP-L cows than in 0-d DP-S cows. In conclusion, a 0-d DP reduced milk yield and improved EB and metabolic status of cows in early lactation compared with a 30-d DP. Reducing the postpartum level of concentrate of cows with a 0-d DP did not affect fat- and protein-corrected milk yield or plasma FFA and BHB concentrations in early lactation but did reduce EB in wk 6 and 7 postpartum.  相似文献   

13.
The objective of this study was to monitor the dry matter intake (DMI), metabolic status, uterine health, and resumption of cyclicity in cows with similar genetic merit for milk production traits but with either good (Fert+) or poor genetic merit (Fert−) for fertility traits. Twenty-six cows were enrolled in the study and data are reported for 15 Fert+ and 10 Fert− cows that completed the study. All cows received a total mixed ration diet during early lactation and were turned out to pasture in late spring. Dry matter intake was recorded daily from wk −2 to 5 relative to parturition. Blood metabolites and metabolic hormones were measured from wk −2 to 8 relative to parturition. Milk production, body condition score, and body weight until wk 35 of lactation are reported. To monitor uterine health, vaginal mucus was scored weekly on a scale of 0 (no pus) to 3 (≥50% pus) from parturition to wk 8 and uterine polymorphonuclear neutrophil count was measured at wk 3 and 6 postpartum. Prepartum DMI was similar between genotypes, but Fert+ cows had significantly greater DMI than Fert− cows (19.7 vs. 16.8 kg of dry matter/d) during the postpartum period. Energy balance at wk 1 was significantly greater in Fert+ cows than in Fert− cows [2.3 vs. −1.12 unité fourragère lait (UFL)/d]. The Fert+ cows had significantly greater daily milk solids production (1.89 vs. 1.74 kg/d) and tended to have greater daily milk yield (24.2 vs. 22.3 kg/d). The Fert+ cows had significantly greater mean circulating insulin-like growth factor-I (102.62 vs. 56.85 ng/mL) and tended to have greater mean circulating insulin (3.25 vs. 2.62 μIU/mL) compared with Fert− cows from wk −2 to 8 relative to parturition. Mean circulating glucose (3.40 vs. 3.01 mmol/L) concentrations were significantly greater in Fert+ cows compared with Fert− cows from wk −2 to 3 relative to parturition. The Fert+ cows maintained significantly greater mean body condition score throughout lactation compared with Fert− cows (2.98 vs. 2.74 units). Moreover, Fert+ cows had better uterine health compared with Fert− cows, as evidenced by lower weekly vaginal mucus scores from wk 2 to 6 postpartum and, based on uterine cytology, smaller proportions were classified as having endometritis at wk 3 (0.42 vs. 0.78) and 6 (0.25 vs. 0.75). Also, a significantly greater proportion of Fert+ cows had resumed cyclicity by wk 6 postpartum (0.86 vs. 0.20) compared with Fert− cows. Hence, we report for the first time that genetic merit for fertility traits is associated with postpartum uterine health status. Superior uterine health and earlier resumption of cyclicity may be mediated through differences in DMI, energy balance, insulin, insulin-like growth factor-I, and body condition score profiles. Importantly, phenotypic improvement in fertility traits was achieved without antagonizing milk production.  相似文献   

14.
The aim of the present study was to examine the relationship between characteristics of the lactation curve, on the basis of daily milk yield, and ovulation within 3 wk postpartum as an indicator of early return to luteal activity in dairy cows. Lactation records from 46 lactating Holstein cows between calving and 305 d postpartum were studied. Milk samples were collected twice weekly between d 7 and 100 for later determination of progesterone concentrations. Occurrence of an early first ovulation was determined by an increase in milk progesterone by 3 wk after calving. Milk yield was recorded daily until 305 d postpartum, and average yield was calculated weekly. The lactation curve was characterized by 8 indices on the basis of the weekly average of milk yield as follows: a) first-week milk yield; b) peak milk yield; c) actual 305-d milk yield; d) peak week; e) difference in milk yield between the first week and peak week; f) difference in milk yield between the peak week and last week (43rd week postpartum); g) ratio of increase in milk yield between wk 1 and the week of peak yield; and h) ratio of decline in milk yield between the week of peak yield and the last week. Indices g and h were calculated as linear. The number of cows having ovulated by 3 wk postpartum was 22 (47.8%). The resumption of ovarian cycles with normal luteal phases occurred earlier in ovular cows than in anovular cows (32.0 d vs. 57.1 d). Although total milk yield did not differ between ovular and anovular cows, the ratio of increase in milk yield from the first week to the peak week (index g) in ovular cows was smaller compared with that of anovular cows (1.71 vs. 2.54). In addition, the ratio of increase in milk yield from the first week to the third week postpartum was greater in anovular cows by 3 wk postpartum (ovular = 1.43 ± 0.23 vs. anovular = 2.32 ± 0.29). In conclusion, the present study demonstrates that a greater increasing ratio of milk yield during early lactation may delay resumption of ovarian cycles after parturition. Therefore, this study is the first to demonstrate statistically that a smaller increasing ratio of milk yield (index g) during early lactation may have a beneficial effect on the first ovulation by 3 wk postpartum.  相似文献   

15.
Poor reproductive performance limits cow longevity in seasonal, pasture-based dairy systems. Few differences in ovarian dynamics have been reported in different strains of Holstein-Friesian cows, implying that the uterine environment may be a key component determining reproductive success. To test the hypothesis that the uterine environment differs among genetic strains of the Holstein-Friesian cow, endometrial fatty acids (FA) were analyzed from New Zealand (NZ), and North American (NA) Holstein-Friesian cows. The effect of reproductive status was also investigated, with cows from both Holstein-Friesian strains slaughtered on either d 17 of the estrous cycle (termed cyclic) or d 17 of pregnancy (after embryo transfer; termed pregnant). Endometrial tissues were collected from 22 cows (NZ pregnant, n = 6; NZ cyclic, n = 4; NA pregnant, n = 6; NA cyclic, n = 6), and FA composition was analyzed. Daily plasma progesterone concentrations, milk production, milk FA composition, body weight, and body condition score were determined. Milk yield (4% fat-corrected milk) was similar for the NZ (28.5 kg/d) and NA (29.3 kg/d; SE 2.07 kg/d) cows, but NZ cows had a greater mean milk fat percentage. Mean plasma progesterone concentrations were significantly greater in NZ cows. Plasma progesterone concentrations were similar in the pregnant and cyclic groups. Mean length of the trophoblast recovered from the pregnant cows (NZ: 20.8 ± 2.84 cm; NA: 27.9 ± 10.23 cm) was not affected by genetic strain. Endometrial tissues from NZ cows contained greater concentrations of C17:0, C20:3n-3, and total polyunsaturated FA. The endometria from pregnant cows contained greater concentrations of C17:0, C20:2, and C20:3n-6, and less C20:1, C20:2, C20:5n-3. The observed changes in endometrial FA between Holstein-Friesian cows of different genetic origins or reproductive states may reflect differences in endometrial function and may affect reproductive function.  相似文献   

16.
Effects of feeding a dry glycerin product (minimal 65% of food grade glycerol, dry powder) to 39 multiparous Holstein dairy cows (19 control and 20 glycerin-supplemented; lactation number = 2.2 ± 1.3 SD) on feed intake, milk yield and composition, and blood metabolic profiles were investigated. Dry glycerin was fed at 250 g/d as a top dressing (corresponding to 162.5 g of glycerol/d) to the common lactating total mixed ration from parturition to 21 d postpartum. Individual milk was sampled from 2 consecutive milkings weekly and analyzed for components. Blood was sampled from the coccygeal vein at 4, 7, 14, and 21 (±0.92, pooled SD) d in milk and analyzed for urea nitrogen, glucose, insulin, nonesterified fatty acids, and β-hydroxybutyrate. Urine was tested for the acetoacetate level weekly by using Ketostix. Average feed intake, milk yield and components, blood metabolites, and serum insulin concentrations were not affected by dry glycerin supplementation. Glycerin-supplemented cows experienced a more positive energy status (higher concentrations of plasma glucose, lower concentrations of plasma β-hydroxybutyrate, and lower concentrations of urine ketones), which was observed during the second week of lactation, suggesting that energy availability may have been improved. This glucogenic effect of dry glycerin did not result in an increase in feed intake or milk yield during the first 3 wk of lactation, likely because of the relatively less negative energy status of cows transitioning into lactation. The tendency toward higher milk yield for glycerin-supplemented cows during wk 6 of lactation (52 vs. 46 kg/d) after the supplementation period (dry glycerin was terminated at wk 3 of lactation) suggested a potential benefit of dry glycerin on subsequent milk production, perhaps through changes in metabolism, which requires further investigation.  相似文献   

17.
Multiparous Holstein cows (n = 108) were used to determine the associations of cytological endometritis (CE) with plasma nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) as markers of energy metabolism, calculated energy balance (EB), and plasma haptoglobin (Hp) as a marker of inflammation during the periparturient period and early lactation. Evaluation of endometrial cytology by low-volume uterine lavage was conducted on 1 d between 40 and 60 d postcalving. The incidence of CE among cows sampled was 40%. The area under the curve (AUC) was calculated for both NEFA and BHBA using data collected from 3 wk before to 3 wk after parturition. Data for NEFA and BHBA AUC were stratified into prepartum (wk −3 to parturition) and postpartum (parturition to wk +3) for statistical analysis. Prepartum AUC for neither NEFA nor BHBA was associated with subsequent CE; however, cows that subsequently developed CE tended to have higher postpartum AUC for NEFA and had higher postpartum AUC for BHBA. Consistent with the results for plasma NEFA and BHBA, calculated EB during the prepartum period was not different in cows that did or did not develop CE; however, cows with CE had lower EB during the 6-wk postpartum period compared with cows without CE. Analysis of EB by week (wk −3 to −1 before calving and wk +1 to +6 postcalving) indicated that EB in cows with CE was lower at wk +1, +2, and +3 and tended to be lower at wk +6 than cows without CE. Plasma Hp concentrations were analyzed from wk +1 to +8 of lactation; concentrations of Hp were not different during either wk +1 or the entire postpartum period between cows that did or did not develop CE. These results suggest that lower energy status during the first 3 wk postpartum, but not necessarily systemic inflammation, is associated with subsequent development of CE.  相似文献   

18.
The objectives of this study were to determine the effect of calving body condition score (BCS) on cow health during the transition period in a pasture-based dairying system. Feed inputs were managed during the second half of the previous lactation so that BCS differed at drying off (BCS 5.0, 4.0, and 3.0 for high, medium, and low treatments, respectively: a 10-point scale); feed allowance was managed after cows were dried off, such that the BCS differences established during lactation remained at the subsequent calving (BCS 5.5, 4.5, and 3.5; n = 20, 18, and 19, for high, medium, and low treatments, respectively). After calving, cows were allocated pasture and pasture silage to ensure grazing residuals >1,600 kg of DM/ha. Milk production was measured weekly; blood was sampled regularly pre- and postpartum to measure indicators of health, and udder and uterine health were evaluated during the 6 wk after calving. Milk weight, fat, protein, and lactose yields, and fat content increased with calving BCS during the first 6 wk of lactation. The effect of calving BCS on the metabolic profile was nonlinear. Before calving, cows in the low group had lower mean plasma β-hydroxybutyrate and serum Mg concentrations and greater mean serum urea than cows in the medium and high BCS groups, which did not differ from each other. During the 6 wk after calving, cows in the low group had lower serum albumin and fructosamine concentrations than cows in the other 2 treatment groups, whereas cows in the low- and medium-BCS groups had proportionately more polymorphonucleated cells in their uterine secretions at 3 and 5 wk postpartum than high-BCS cows. In comparison, plasma β-hydroxybutyrate and nonesterified fatty acid concentrations increased linearly in early lactation with calving BCS, consistent with a greater negative energy balance in these cows. Many of the parameters measured did not vary with BCS. The results highlight that calving BCS and, therefore, BCS through early lactation are not effective indicators of functional welfare, with the analyses presented indicating that both low and high BCS at calving will increase the risk of disease: cows in the low group were more prone to reproductive compromise and fatter cows had an increased risk of metabolic diseases. These results are important in defining the welfare consequences of cow BCS.  相似文献   

19.
We examined the long-term effects of daily subcutaneous injections of 15 mg of glucagon during the first 14 d postpartum with or without coadministration of 400 mL of pure glycerol orally on blood metabolites and hormones and liver composition of Holstein dairy cows during early lactation. Fourteen multiparous cows with body condition score of ≥3.5 points (1-5 point scale) were assigned randomly to one of 4 treatment groups—saline, glucagon, glycerol, or glucagon plus glycerol. Fatty liver syndrome was induced by feeding cows a dry-cow ration supplemented with 6 kg of cracked corn daily during the last 6 wk of the dry period. Compared with saline treatment (n = 3), coadministration of glucagon and glycerol (n = 4) increased plasma glucose and insulin and decreased plasma nonesterified fatty acid concentrations in both treatment weeks, whereas glucagon alone (n = 3) produced similar changes plus a decrease in plasma β-hydroxybutyrate in the second week only. No significant changes were observed for the glycerol alone treatment (n = 4). We conclude that a single daily dose of glycerol for the first 14 d postpartum may potentiate the action of glucagon in the first treatment days to alleviate some symptoms of fatty liver syndrome, such as the increase in plasma nonesterified fatty acids and the decrease in plasma glucose and insulin, in Holstein dairy cows after parturition.  相似文献   

20.
The objective was to study the effects of body condition score (BCS) at calving on dairy performance, indicators of fat and protein mobilization, and metabolic and hormonal profiles during the periparturient period of Holstein-Friesian cows. Twenty-eight multiparous cows were classed according to their BCS (0 to 5 scale) before calving as low (BCS ≤2.5; n = 9), medium (2.75 ≤ BCS ≤ 3.5; n = 10), and high (BCS ≥3.75; n = 9), corresponding to a mean of 2.33, 3.13, and 4.17 points of BCS, and preceding calving intervals of 362, 433, and 640 d, respectively. Cows received the same diets based on preserved grass to allow ad libitum feed intake throughout the study, and lactation diet contained 30% of concentrate (dry-matter basis). Measurements and sampling were performed between wk −4 and 7 relative to calving. No significant effects were observed of BCS group on dry matter intake (kg/d), milk yield, BCS loss, plasma glucose, and insulin concentrations. The high-BCS group had the lowest postpartum energy balance and the greatest plasma concentrations of leptin prepartum, nonesterified fatty acids and β-hydroxybutyrate postpartum, insulin-like growth factor 1, and milk fat content. Milk fat yield was greater for the high- than the low-BCS group (1,681 vs. 1,417 g/d). Low-BCS cows had the greatest concentration of medium-chain fatty acids (e.g., sum of 10:0 to 15:0, and 16:0), and the lowest concentration and secretion of preformed fatty acids (e.g., cis-9 18:1) in milk fat. Milk protein secretion was lowest in the low-BCS group, averaging 924, 1,051, and 1,009 g/d for low-, medium-, and high-BCS groups, respectively. Plasma 3-methylhistidine was greater in wk 1 and 2 postpartum compared with other time points, indicating mobilization of muscle protein. Plasma creatinine tended to be lower and the 3-methylhistidine: creatinine ratio was greater in low- compared with medium- and high-BCS cows, suggesting less muscle mass but more intense mobilization of muscle protein in lean cows. High-BCS cows were metabolically challenged during early lactation due to intense mobilization of body fat. Conversely, limited availability of body fat in low-BCS cows was associated with increased plasma indicators of body protein mobilization during the first weeks of lactation, and lower milk protein secretion. These results should be confirmed using an experimental approach where calving BCS variation would be controlled by design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号