首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
The solubilities of FeO, FeAl2O4, NiO, and NiAl2O4 were measured in cryolite-alumina melts at 1020 °C. FeO was found to be the stable solid phase at alumina concentrations below 5.0 wt pct, while FeAl2O4 was stable above that. The corresponding figure for the nickel system was 3.0 wt pct Al2O3. These values correspond to Gibbs energies of formation of the aluminates (from the constituent oxides) of −17.6 and −29 kJ/mol, respectively. In alumina-saturated melts in the range 980 to 1050 °C, the solubilities of both aluminates increased with increasing temperature, the apparent enthalpies of solution being 65 kJ/mol for FeAl2O4, and 249 kJ/mol for NiAl2O4. Investigation of the solubilities of the aluminates as a function of the NaF/AlF3 ratio in alumina-saturated melts at 1020 °C showed maxima at a molar ratio of around 5. The results are discussed in terms of the species apparently existing in the solution, and are consistent with the solute species being fluorides, not oxyfluorides. The activity coefficients of FeF2 (liquid) and NiF2 (solid) in dilute solution in cryolite are found to be 0.22 and 1.2, respectively.  相似文献   

2.
The experimentally well-known alumina solubility in the range of acidic to neutral cryolite-base melts has been modeled thermodynamically in terms of several oxyfluoride solutes. For an acidic melt, cryolite ratio r=1.5, the dominant solute is monoxygen Na2Al2OF6. In a less acidic regime, dioxygen Na2Al2O2F4 is dominant, whereas for neutral compositions (r=3), Na4Al2O2F6 starts to gain importance. The fit of the model to the experimental solubility data is virtually perfect. The values of the equilibrium constants for the formation of the individual solutes are reported. The formation and conversion of these oxyfluoride complexes serve as an effective buffer opposing change in the melt basicity.  相似文献   

3.
A thermodynamic equilibrium between the Fe-16Cr melts and the CaO-Al2O3-MgO slags at 1823 K as well as the morphology of inclusions was investigated to understand the formation behavior of the MgO-Al2O3 spinel-type inclusions in ferritic stainless steel. The calculated and observed activities of magnesium in Fe-16Cr melts are qualitatively in good agreement with each other, while those of aluminum in steel melts exhibit some discrepancies with scatters. In the composition of molten steel investigated in this study, the log (X MgO/X Al 2O3) of the inclusions linearly increases by increasing the log [a Mg/a Al 2 ·a O 2 ] with the slope close to unity. In addition, the relationship between the log (X MgO/X Al 2O3) of the inclusions and the log (a MgO/a Al 2O3) of the slags exhibits the linear correlation with the slope close to unity. The compositions of the inclusions are relatively close to those of the slags, viz. the MgO-rich magnesia-spinel solid solutions were formed in the steel melts equilibrated with the highly basic slags saturated by CaO or MgO. The spinel inclusions nearly saturated by MgO were observed in the steel melts equilibrated with the slags doubly saturated by MgO and MgAl2O4. The spinel and the Al2O3-rich alumina-spinel solid solutions were formed in the steel melts equilibrated with the slags saturated by MgAl2O4 and MgAl2O4-CaAl2O4 phases, respectively. The apparent modification reaction of MgO to the magnesium aluminate inclusions in steel melts equilibrated with the highly basic slags would be constituted by the following reaction steps: (1) diffusion of aluminum from bulk to the metal/MgO interface, (2) oxidation of the aluminum to the Al3+ ions at the metal/intermediate layer interface, (3) diffusion of Al3+ ions and electrons through the intermediate layer, and (4) magnesium aluminate (MgAl2O4 spinel, for example) formation by the ionic reaction.  相似文献   

4.
Refractive indexes for the Al2O3-Na2O-SiO2 system have been measured using an ellipsometer for a wavelength of 632.8 nm over a wide temperature range (1100 to 1800 K). Two kinds of sample were used: xAl2O3-(40-x)Na2O-60SiO2 and yAl2O3-yNa2O-(100-2y)SiO2, where x ranged between 6 and 20 mol pct and y between 12.5 and 25 mol pct. In the former samples, the temperature coefficient of refractive indexes changed from negative to positive on increasing the concentration of Al2O3. In the latter samples, the refractive indexes increased monotonically with decreasing concentration of SiO2, and the temperature coefficient was always positive. It has been found that the temperature dependence of refractive indexes in these melts is determined by the coefficient of thermal expansion, which would be relevant to the degree of polymerization of the melts. In addition, the electronic polarizability of oxygen derived from the refractive indexes increased with increasing temperature in each melt. This suggests that the basicity of the alumino-silicate melts increases as temperature increases. The positive temperature coefficient of the electronic polarizability of oxygen can be attributed to an increase in the distance between cation and oxygen ion due to thermal expansion. The dependence of the electronic polarizability of oxygen on the concentration of Al2O3 has also been discussed in terms of the electronic polarizabilities of three types of oxygen contained in the melts. This article is based on a presentation given in the Mills Symposium entitled “Metals, Slags, Glasses: High Temperature Properties & Phenomena,” which took place at The Institute of Materials in London, England, on August 22–23, 2002.  相似文献   

5.
The solubility of alumina was measured experimentally in neutral and basic cryolite melts with a composition range of 3≤cryolite ratio r≤12.5 (r=mol NaF/mol AlF3). Thermodynamic activity probes for Al and Na were developed and used to monitor the melt basicity (log a NaF) and acidity (log ) for the solubility measurements. The alumina solubility in cryolite melts was modeled thermodynamically in terms of three oxyfluoride solutes over the wide composition range of 1.5≤r≤12.5. In an acidic melt, mono-oxygen Na2Al2OF6 is the dominant solute. In a less acidic melt, the di-oxygen solute Na2Al2O2F4 is dominant. With further increase in melt basicity, another di-oxygen solute Na4Al2O2F6 gains importance. The present model describes perfectly the experimentally determined alumina solubility data. The solute distributions were calculated as a function of dissolved Al2O3 content for Al2O3-undersaturated cryolite melts, and are compared with the literature data. The three-dimensional (3-D) geometries (stereochemistry) of the three oxyfluoride solutes are also proposed in this study.  相似文献   

6.
7.
The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature {χ] = f(CR, [Al2O3], T)}.  相似文献   

8.
The viscosity of CaO-SiO2 (-MgO)-Al2O3 slags was measured to clarify the effects of Al2O3 and MgO on the structure and viscous flow of molten slags at high temperatures. Furthermore, the infrared spectra of the quenched slags were analyzed to understand the structural role of Al2O3 in the polymerization or depolymerization of silicate network. The Al2O3 behaves as an amphoteric oxide with the composition of slags; that is, the alumina behaves as a network former up to about 10 mass pct Al2O3, while it acts as a network modifier, in parts, in the composition greater than 10 mass pct Al2O3. This amphoteric role of Al2O3 in the viscous flow of molten slags at the Newtonian flow region was diminished by the coexistence of MgO. The effect of Al2O3 on the viscosity increase can be understood based on an increase in the degree of polymerization (DOP) by the incorporation of the [AlO4]-tetrahedra into the [SiO4]-tetrahedral units, and this was confirmed by the infrared (IR) spectra of the quenched slags. The influence of alumina on the viscosity decrease can be explained on the basis of a decrease in the DOP by the increase in the relative fraction of the [AlO6]-octahedral units. The relative intensity of the IR bands for the [SiO4]-tetrahedra with low NBO/Si decreased, while that of the IR bands for [SiO4]-tetrahedra with high NBO/Si increased with increasing Al2O3 content greater than the critical point, i.e., about 10 mass pct in the present systems. The variations of the activity coefficient of slag components with composition indirectly supported those of viscosity and structure of the aluminosilicate melts.  相似文献   

9.
Solutions of iron oxides in molten cryolite   总被引:1,自引:0,他引:1  
All the iron oxides (FeO, Fe3O4, Fe2O3, and FeAl2O4) dissolve in cryolite-alumina melts to give solutions containing both Fe(II) and Fe(III). The factor controlling the Fe(II)/Fe(III) ratio is the oxygen pressure, and experimental results are interpreted on that basis. Predictions are made of the variation of solubility with oxygen pressure, and the standard potential of the Fe2+/Fe3+ redox couple is calculated. The anode and anode gas of an industrial Hall-Heroult cell appear to be insufficiently oxidizing to cause significant conversion of Fe(II) to Fe(III). An anomaly in the liquidus diagrams for FeF2 – Na3AlF6 and FeO – Na3AlF6 is accounted for in terms of solid solution of FeF2 in cryolite. This article is based on a presentation made at “The Milton Blander Symposium on Thermodynamic Predictions and Applications” at the TMS Annual Meeting in San Diego, California, on March 1–2, 1999, under the auspices of the TMS Extraction and Processing Division and the ASM Thermodynamics and Phase Equilibrium Committee.  相似文献   

10.
The slag composition plays a critical role in the formation of inclusions and the cleanliness of steel. In this study, the effects of FeO content and the C/A (CaO/Al2O3) ratio in the slag on the formation of inclusions were investigated based on a 10-minute slag–steel reaction in a MgO crucible. The FeO content in the top slag was shown to have a significant effect on the formation of MgO·Al2O3 spinel inclusions, and critical content exists; when the initial FeO content in the slag was less than 2 pct, MgO·Al2O3 spinel inclusions formed, and the T.O (total oxygen) was 20 ppm; when the initial FeO content in the slag was more than 4 pct, only Al2O3 inclusions were observed and the T.O was 50 ppm. It was clarified that the main source of Mg for the MgO·Al2O3 spinel inclusion formation was the top slag rather than the MgO crucible. In addition, the cleanliness of the steel increased as the initial FeO content in the top slag decreased. As regards the effects of the C/A ratio, the MgO amount in the observed inclusions gradually increased, whereas the T.O content decreased gradually with the increasing C/A ratio. Slag with a composition close to the CaO-saturated region had the best effect on the inclusion absorption.  相似文献   

11.
In order to effectively enhance the efficiency of dephosphorization, the distribution ratios of phosphorus between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 slags and carbon-saturated iron (\( L_{\text{P}}^{\text{Fe-C}} \)) were examined through laboratory experiments in this study, along with the effects of different influencing factors such as the temperature and concentrations of the various slag components. Thermodynamic simulations showed that, with the addition of Na2O and Al2O3, the liquid areas of the CaO-FeO-SiO2 slag are enlarged significantly, with Al2O3 and Na2O acting as fluxes when added to the slag in the appropriate concentrations. The experimental data suggested that \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the binary basicity of the slag, with the basicity having a greater effect than the temperature and FeO content; \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the Na2O content and decrease in the Al2O3 content. In contrast to the case for the dephosphorization of molten steel, for the hot-metal dephosphorization process investigated in this study, the FeO content of the slag had a smaller effect on \( L_{\text{P}}^{\text{Fe-C}} \) than did the other factors such as the temperature and slag basicity. Based on the experimental data, by using regression analysis, \( \log L_{\text{P}}^{\text{Fe-C}} \) could be expressed as a function of the temperature and the slag component concentrations as follows:
$$ \begin{aligned} \log L_{\text{P}}^{\text{Fe-C}} & = 0.059({\text{pct}}\;{\text{CaO}}) + 1.583\log ({\text{TFe}}) - 0.052\left( {{\text{pct}}\;{\text{SiO}}_{2} } \right) - 0.014\left( {{\text{pct}}\;{\text{Al}}_{2} {\text{O}}_{3} } \right) \\ \, & \quad + 0.142\left( {{\text{pct}}\;{\text{Na}}_{2} {\text{O}}} \right) - 0.003\left( {{\text{pct}}\;{\text{TiO}}_{2} } \right) + 0.049\left( {{\text{pct}}\;{\text{P}}_{2} {\text{O}}_{5} } \right) + \frac{13{,}527}{T} - 9.87. \\ \end{aligned} $$
  相似文献   

12.
The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.  相似文献   

13.
Understanding the viscous behavior of copper smelting slags is essential in increasing the process efficiency and obtaining the discrete separation between the matte and the slag. The viscosity of the FeOt-SiO2-Al2O3 copper smelting slags was measured in the current study using the rotating spindle method. The viscosity at a fixed Al2O3 concentration decreased with increasing Fe/SiO2 ratio because of the depolymerization of the molten slag by the network-modifying free oxygen ions (O2−) supplied by FeO. The Fourier transform infrared (FTIR) analyses of the slag samples with increasing Fe/SiO2 ratio revealed that the amount of large silicate sheets decreased, whereas the amount of simpler silicate structures increased. Al2O3 additions to the ternary FeOt-SiO2-Al2O3 slag system at a fixed Fe/SiO2 ratio showed a characteristic V-shaped pattern, where initial additions decreased the viscosity, reached a minimum, and increased subsequently with higher Al2O3 content. The effect of Al2O3 was considered to be related to the amphoteric behavior of Al2O3, where Al2O3 initially behaves as a basic oxide and changes to an acidic oxide with variation in slag composition. Furthermore, Al2O3 additions also resulted in the high temperature phase change between fayalite/hercynite and the modification of the liquidus temperature with Al2O3 additions affecting the viscosity of the copper smelting slag.  相似文献   

14.
In an attempt to systematize the knowledge of the heat conduction of liquid silicates, the effective thermal diffusivities of some synthetic slags containing CaO, Al2O3, and SiO2 have been measured, using the three-layer laser-flash method on a differential scheme in the temperature range of 1625 to 1825 K. The effective thermal diffusivities measured, which are a combination of the phononic and photonic heat-transfer mechanisms, were found to increase with increasing temperature for all the presently investigated slags. The slag compositions were chosen in such a way that the changes in the effective thermal diffusivities would reflect the changes in the structure of the slags. It was observed that, at a CaO/Al2O3 molar ratio of 4.42, an increase of the SiO2 content had very little effect on the effective thermal diffusivity values. On the other hand, addition of SiO2 to a slag with the CaO/Al2O3 molar ratio of 2.59 resulted in a significant increase in the effective thermal diffusivity. The addition of Al2O3 to slags with a constant CaO/SiO2 molar ratio resulted in a marked increase in the effective thermal diffusivity. Both these trends indicate that there might be an influence of the network formation in silicate melts on the effective thermal diffusivity.  相似文献   

15.
The solubility of alumina in NaF-AlF3 melts was calculated and modeled thermodynamically for the temperature range of 1240 to 1300 K (967 °C to 1027 °C). The solute complexes of alumina in the cryolite melts were identified to be Na2Al2OF6 (acidic solute), Na2Al2O2F4 (neutral solute), and Na4Al2O2F6 (basic solute). The assumption that the oxygen-free solute species in solution were Na3AlF6 and NaAlF4 was supported by the modeling results. The equilibrium constants for the formation reactions of the solutes were calculated and the corresponding ΔG f 0 values were evaluated as a function of temperature. The interaction derivatives (∂ ln a NaF/∂x add, ∂ ln a NaF/∂x add, and ∂ ln a AlF3/∂x add) for small additions of LiF, CaF2, and MgF2 to the NaF-AlF3-Al2O3 ternary system were also estimated as a function of temperature and melt composition.  相似文献   

16.
The oxidation behavior of a cast nickel aluminide alloy, IC221M, was examined after long-term aging in air for up to 16,600 hours at 900 °C and 5000 hours at 1100 °C. The oxidation products were identified using X-ray diffraction and energy-dispersive X-ray (EDX) spectroscopy with multivariate statistical analysis. At 900 °C, NiO dominates the oxidation products initially, but at longer times, NiAl2O4 spinel and Al2O3 predominate and remain stable for times up to 16,600 hours. Cross-sectional observation confirmed that a continuous surface oxide that is mostly a mixture of Al2O3 and NiAl2O4 protects the base metal. In its initial stages, the oxidation process at 1100 °C is qualitatively similar to that at 900 °C but with faster kinetics. However, as aging proceeds, NiO spalls freely from the surface, and a protective continuous oxide scale does not form. The oxidation mechanism can be qualitatively understood by the selective oxidation mechanism maps developed by Giggins and Pettit. An erratum to this article is available at .  相似文献   

17.
The phase equilibria and liquidus temperatures in the binary SiO2-ZnO system and in the ternary Al2O3-SiO2-ZnO system at low Al2O3 concentrations have been experimentally determined using the equilibration and quenching technique followed by electron probe X-ray microanalysis. In the SiO2-ZnO system, two binary eutectics involving the congruently melting willemite (Zn2SiO4) were found at 1448±5 °C and 0.52±0.01 mole fraction ZnO and at 1502±5 °C and 0.71±0.01 mole fraction ZnO, respectively. The two ternary eutectics involving willemite previously reported in the Al2O3-SiO2-ZnO system were found to be at 1315±5 °C and 1425±25 °C, respectively. The compositions of the eutectics are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fraction Al2O3, SiO2, and ZnO, respectively. The results of the present investigation are significantly different from the results of previous studies.  相似文献   

18.
The Cu solubility was measured in the CaO-B2O3 and BaO-B2O3 slag systems to understand the dissolution mechanism of Cu in the slags. The Cu solubility had a linear relationship with oxygen partial pressure in the CaO-B2O3 slag system, which corresponds with previous studies. Also, the Cu solubilities in slag decreased with increasing the slag basicity, which value of slope was close to –0.5 in logarithmic form. From the results of experiment, the Cu dissolution mechanism established as follows:
\textCu + \frac14\textO2 = \textCu + + \frac12\textO2 - {\text{Cu}} + \frac{1}{4}{\text{O}}_{2} = {\text{Cu}}^{ + } + \frac{1}{2}{\text{O}}^{2 - }  相似文献   

19.
Two-phase TiB2+Al2O3 ceramics with an interconnected or dispersed TiB2 (minor)-phase microstructure can be produced by variations in processing parameters. A standard method of quantitative characterization of the microstructural bias, i.e., the degree of TiB2 phase connectivity relative to its dispersion, is necessary to comprehend the mechanism(s) controlling the evolution of microstructure during processing. In this work, techniques derived from stereology were used to quantitatively characterize the microstructural bias on the basis of the connectivity and dispersion of the minor phase (TiB2), in addition to the size of the TiB2- and Al2O3-phase regions. The mean integral curvature calculated using the area particle-count and area tangent-count methods was determined to quantitatively describe the connectivity of the TiB2 minor phase around the Al2O3 major phase. The results illustrate that, in spite of partial and mixed bias, integral curvature measurements (particularly those based on the area tangent-count method) provide a reliable and reproducible means for quantitative characterization of the two-phase biased microstructure.  相似文献   

20.
In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q0(Si) and Q2(Si) decreased, while those of the asymmetric units of Q1(Si) and Q3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号