首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A solar-driven Stirling engine is modelled as a combined system which consists of a solar collector and a Stirling engine. The performance of the system is investigated, based on the linearized heat loss model of the solar collector and the irreverisible cycle model of the Stirling engine affected by finite-rate heat transfer and regenerative losses. The maximum efficiency of the system and the optimal operating temperature of the solar collector are determined. Moreover, it is pointed out that the investigation method in the present paper is valid for other heat loss models of the solar collector as well, and the results obtained are also valid for a solar-driven Ericsson engine system using an ideal gas as its engine work substance. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
《Exergy》2001,1(2):122-126
The collective role of radiation and convection modes of heat transfer in a solar driven heat engine is investigated through a finite time thermodynamics analysis. Heat transfer from hot reservoir is assumed to be radiation and/or convection dominated. The irreversibilities due to these finite rate heat transfers were considered in determining the limits of efficiency and power generation that were discussed through varying process parameters. Results were compared with Curzon–Ahlborn and Carnot analysis cases. It is found that the upper limit of efficiency is a function of both the functional temperature dependence of heat transfer and relevant system parameters.  相似文献   

3.
An irreversible solar-driven Braysson heat engine system is presented, in which the temperature-dependent heat capacity of the working fluid, the radiation–convection heat losses of the solar collector and the irreversibilities resulting from heat transfer and non-isentropic compression and expansion processes are taken into account. Based on the thermodynamic analysis method and the optimal control theory, the mathematical expression of the overall efficiency of the system is derived and the maximum overall efficiency is calculated, and the operating temperatures of the solar collector and the cyclic working fluid and the ratio of heat-transfer areas of the heat engine are optimized. By using numerical optimization technology, the influences of the variable heat capacity of the working fluid, the radiation–convection heat losses of the solar collector and the multi-irreversibilities on the performance characteristics of the solar-driven heat engine system are investigated and evaluated in detail. Moreover, it is expounded that the optimal performance and important parametric bounds of the irreversible solar-driven Braysson heat engine with the constant heat capacity of the working fluid and the irreversible solar-driven Carnot heat engine can be deduced from the conclusions in the present paper.  相似文献   

4.
A novel model of the solar-driven thermodynamic cycle system which consists of a solar collector and a Braysson heat engine is established. The performance characteristics of the system are optimized on the basis of the linear heat-loss model of a solar collector and the irreversible cycle model of a Braysson heat engine. The maximum efficiency of the system and the optimally operating temperature of the solar collector are determined and other relevant performance characteristics of the system are discussed. The results obtained here may provide some theoretical guidance for the optimal design and operation of solar-driven Braysson and Carnot heat engines.  相似文献   

5.
《Energy》1988,13(9):681-687
The power output of a simple, finite-time Carnot heat engine is studied. The model adopted is a reversible Carnot cycle coupled to a heat source and a heat sink by heat transfer. Both the heat source and the heat sink have finite heat-capacity rates. A mathematical expression is derived for the power output of the irreversible heat engine. The maximum power output is found. The maximum bound provides the basis for designing a real heat engine and for a performance comparison with existing power plants.  相似文献   

6.
An optimal performance analysis for an equivalent Carnot-like cycle heat engine of a parabolic-trough direct-steam-generation solar driven Rankine cycle power plant at maximum power and maximum power density conditions is performed. Simultaneous radiation-convection and only radiation heat transfer mechanisms from solar concentrating collector, which is the high temperature thermal reservoir, are considered separately. Heat rejection to the low temperature thermal reservoir is assumed to be convection dominated. Irreversibilities are taken into account through the finite-rate heat transfer between the fixed temperature thermal reservoirs and the internally reversible heat engine. Comparisons proved that the performance of a solar driven Carnot-like heat engine at maximum power density conditions, which receives thermal energy by either radiation-convection or only radiation heat transfer mechanism and rejects its unavailable portion to surroundings by convective heat transfer through heat exchangers, has the characteristics of (1) a solar driven Carnot heat engine at maximum power conditions, having radiation heat transfer at high and convective heat transfer at low temperature heat exchangers respectively, as the allocation parameter takes small values, and of (2) a Carnot heat engine at maximum power density conditions, having convective heat transfer at both heat exchangers, as the allocation parameter takes large values. Comprehensive discussions on the effect of heat transfer mechanisms are provided.  相似文献   

7.
Heat engines will usually be designed somewhere between the two limits of (1) maximum efficiency, which corresponds to “Carnot” or reversible operation, albeit at zero power, and (2) maximum power point. Each of these limits implies a specific dependence of heat engine efficiency on the temperatures of the hot and cold reservoirs between which the heat engine operates. We illustrate that the energetically optimal operating temperature for solar-driven heat engines is relatively insensitive to the engine design point. This also pertains to solar collectors whose heat loss can range from predominantly linear (conductive/convective) to primarily radiative. Potential misconceptions are also discussed regarding the maximum power point and the Curzon-Ahlborn efficiency of “finite-time thermodynamics.”  相似文献   

8.
An irreversible solar-driven Braysson thermal engine has been investigated, in which finite rate heat transfer with the radiation–convection mode from the high-temperature reservoir to the heat engine and the convection mode from the heat engine to the heat sink, and irreversible adiabatic processes are taken into account. Based on the thermodynamic analysis method, the analytic expressions of the power output and efficiency of the Braysson heat engine are derived. By using numerical value calculation, the effects of the isobaric temperature ratio, internal irreversibility parameter, temperature ratio of the thermal reservoirs as well as the allocation parameters involving the heat-transfer coefficients, and areas on the performance characteristics of the Braysson heat engine are analysed and discussed in detail. The results obtained in this paper are more general than the related conclusions published in the literature and may provide some parameter design reference for solar-driven heat engines.  相似文献   

9.
An irreversible cycle model of a solar-driven Brayton heat engine is established, in which the heat losses of the solar collector and the external and internal irreversibilities of the heat engine are taken into account, and used to investigate the optimal performance of the cycle system. The maximum overall efficiency of the system is determined. The operating temperature of the solar collector and the temperature ratio in the isobaric process are optimized. The influence of the heat losses of the solar collector and the external and internal irreversibilities of the heat engine on the cyclic performance is discussed in detail. Some important curves which can reveal the optimum performance characteristics of the system are given. The results obtained here are general, and consequently, may be directly used to discuss the optimal performance of other solar-driven heat engines.  相似文献   

10.
The thermodynamic optimization of a solar driven refrigerator, that is, a refrigerator driven by use of the solar Rankine power cycle, is studied in this paper. The system is totally irreversible, i.e. externally and internally irreversible. The effect of the operating conditions on the overall efficiency of the system is evaluated.  相似文献   

11.
In this study, a multiobjective optimization approach was used to conduct a thermodynamic investigation of a solar Brayton and endoreversible heat engine. The thermo-economic performance capabilities of such machines with hybrid input power, solar-fuel, are examined numerically. Throughout this study, three performance indicators of the cycle, including the power output, the thermo-economic performance function, and the thermal efficiency are optimized concurrently employing a multiobjective steepest descent method, named the Accelerated Diagonal Steepest Descent algorithm. Furthermore, to properly analyze the error, three strategies are employed in the decision-making step to identify the optimal compromise solution, and the deviation indices under these strategies are analyzed. The numerical experiments reveal that the present algorithm outperforms the two popular multiobjective algorithms: the multiobjective particle swarm optimization method and the elitist nondominated sorting genetic algorithm. The relevance of the presented algorithm with respect to the previous ones is examined by means of a deviation index. Finally, these experiments show the optimal design parameters which lead to the best performance of the heat engine.  相似文献   

12.
用有限时间热力学方法分析了工作在恒温热源TH、TL之间的普适定常流内可逆热机循环模型的炯经济性能,导出了循环利润率与工质温比、热效率与工质温比的关系式,以及利润率和效率的特性关系,并由数值计算分析了循环过程对循环性能的影响特点。所得结果包含了内可逆Carnot、Diesel、Otto、Atkinson、Brayton和Dual循环的有限时间炯经济性能。  相似文献   

13.
用有限时间热力学方法分析了热漏、热阻和其他不可逆效应对工作在两恒温热源之间的普适定常流不可逆热机循环性能的影响,导出了由两个绝热过程、两个等热容加热过程以及两个等热容放热过程组成的循环的功率、效率和利润率的特性关系.并由数值计算分析了循环过程对循环性能的影响特点。所得结果包含了内可逆和不可逆Carnot、Diesel、Otto、Atkinson、Brayton、Dual、Miller循环的有限时 [火用]经济性能。  相似文献   

14.
普适内可逆热机循环模型及其生态学优化   总被引:1,自引:1,他引:0  
用有限时间热力学的方法分析了空气标准内可逆热机循环,导出了存在传热损失时,由两个加热过程、一个放热过程和两个绝热过程组成的普适的空气标准内可逆热机循环的功率、效率和生态学性能,并由数值计算分析了循环过程对循环性能的影响特点。所得结果包含了内可逆D iese l循环、O tto循环、B rayton循环、A tk inson循环和Dua l循环的特性。  相似文献   

15.
16.
Chih Wu  Robert L. Kiang 《Energy》1992,17(12):1173-1178
This paper extends Curzon and Ahlborn's result which gives a thermodynamic efficiency of an endoreversible Carnot engine. It is shown that the internal irreversibilities of a Carnot engine can be characterized by a single parameter representing the ratio of two entropy differences. Named the cycle irreversibility parameter, the presence of this parameter in the equations for maximum power and efficiency clearly shows that an engine with internal irreversibilities delivers less power and has a lower efficiency than an endoreversible engine.  相似文献   

17.
The power output of a simple endoreversible Brayton gas heat engine is analyzed and optimized. The endoreversible engine is defined as a power cycle in which the two processes of heat transfer from and to the surrounding heat reservoirs are the only irreversible processes in the Brayton cycle. A mathematical expression is derived for the power output of the irreversible heat engine. The power optimization provides the basis for designing a real gas heat engine and for a performance comparison with existing Brayton power plants.  相似文献   

18.
In this paper, a novel system to enhance the performance of a solar-driven finite speed alpha-type Stirling engine is proposed and evaluated. Part of the concentrated solar energy is used to drive an ejector refrigeration system. The cooling produced in the ejector cooling cycle is used to cool the Stirling engine to enhance its efficiency. Model equations to describe the systems are proposed and solved numerically. The results indicate that the new system produces averagely 3.3 times electrical power more than the conventional one. Moreover, the proposed system improves the Stirling engine efficiency by up to 46% in comparison with 19.15% for the conventional Stirling engine under solar radiation intensity of (1 kW/m2). Also, the results showed that the solar radiation intensity and wind speed are the most influential parameters that affect the proposed system efficiency. The new system is recommended to use in desert climates where high average daily solar radiation intensity, low wind speeds, and water shortage exist. Economic analysis is carried out to determine the feasibility of the proposed system under different economic parameters. It is found that, for instance, the simple payback period is 4.64 years for the new system when the selling price of electricity is 0.35 $/kWh.  相似文献   

19.
The effect of the irreversibility of finite-rate heat transfer on the performance of a solar-driven heat pump is investigated by using the theory of finite time thermodynamics. Maximizing the COP of the system leads to some novel rules for the optimum choices of primary performance parameters, such as the operating temperatures of the solar collector and the working fluid in the heat exchangers and the heat transfer areas of the heat exchangers. These rules can guide the evaluation of existing real solar-driven heat pumps or influence the design of future solar-driven heat pumps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号