首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hafnium oxide (HfOx)‐based memristive devices have tremendous potential as nonvolatile resistive random access memory (RRAM) and in neuromorphic electronics. Despite its seemingly simple two‐terminal structure, a myriad of RRAM devices reported in the rapidly growing literature exhibit rather complex resistive switching behaviors. Using Pt/HfOx/TiN‐based metal–insulator–metal structures as model systems, it is shown that a well‐controlled oxygen stoichiometry governs the filament formation and the occurrence of multiple switching modes. The oxygen vacancy concentration is found to be the key factor in manipulating the balance between electric field and Joule heating during formation, rupture (reset), and reformation (set) of the conductive filaments in the dielectric. In addition, the engineering of oxygen vacancies stabilizes atomic size filament constrictions exhibiting integer and half‐integer conductance quantization at room temperature during set and reset. Identifying the materials conditions of different switching modes and conductance quantization contributes to a unified switching model correlating structural and functional properties of RRAM materials. The possibility to engineer the oxygen stoichiometry in HfOx will allow creating quantum point contacts with multiple conductance quanta as a first step toward multilevel memristive quantum devices.  相似文献   

2.
The physical mechanism of doping effects on switching uniformity and operation voltage in Al-doped HfO2 resistive random access memory(RRAM) devices is proposed from another perspective:defects interactions, based on first principle calculations.In doped HfO2,dopant is proved to have a localized effect on the formation of defects and the interactions between them.In addition,both effects cause oxygen vacancies(VO) to have a tendency to form clusters and these clusters are easy to form around the dopant.It is proved that this process can improve the performance of material through projected density of states(PDOS) analysis.For VO filament-type RRAM devices, these clusters are concluded to be helpful for the controllability of the switching process in which oxygen vacancy filaments form and break.Therefore,improved uniformity and operation voltage of Al-doped HfjO2 RRAM devices is achieved.  相似文献   

3.
在新型非易失性存储领域,结构简单、高速低耗的阻变存储器具有巨大优势和很强的竞争力.简要介绍了阻变存储器的结构及其两个电阻转变行为.总结了两类阻变机理,探讨了阻变存储器性能优化的方法,以及优化方法在阻变性能与器件的可靠性和稳定性之间如何取得平衡统一的问题,并展望了其前景.  相似文献   

4.
Memristive devices are the precursors to high density nanoscale memories and the building blocks for neuromorphic computing. In this work, a unique room temperature synthesized perovskite oxide (amorphous SrTiO3: a‐STO) thin film platform with engineered oxygen deficiencies is shown to realize high performance and scalable metal‐oxide‐metal (MIM) memristive arrays demonstrating excellent uniformity of the key resistive switching parameters. a‐STO memristors exhibit nonvolatile bipolar resistive switching with significantly high (103–104) switching ratios, good endurance (>106I–V sweep cycles), and retention with less than 1% change in resistance over repeated 105 s long READ cycles. Nano‐contact studies utilizing in situ electrical nanoindentation technique reveal nanoionics driven switching processes that rely on isolatedly controllable nano‐switches uniformly distributed over the device area. Furthermore, in situ electrical nanoindentation studies on ultrathin a‐STO/metal stacks highlight the impact of mechanical stress on the modulation of non‐linear ionic transport mechanisms in perovskite oxides while confirming the ultimate scalability of these devices. These results highlight the promise of amorphous perovskite memristors for high performance CMOS/CMOL compatible memristive systems.  相似文献   

5.
In order to fulfill the information storage needs of modern societies, the performance of electronic nonvolatile memories (NVMs) should be continuously improved. In the past few years, resistive random access memories (RRAM) have raised as one of the most promising technologies for future information storage due to their excellent performance and easy fabrication. In this work, a novel strategy is presented to further extend the performance of RRAMs. By using only cheap and industry friendly materials (Ti, TiO2, SiOX, and n++Si), memory cells are developed that show both filamentary and distributed resistive switching simultaneously (i.e., in the same IV curve). The devices exhibit unprecedented hysteretic IV characteristics, high current on/off ratios up to ≈5 orders of magnitude, ultra low currents in high resistive state and low resistive state (100 pA and 125 nA at –0.1 V, respectively), sharp switching transitions, good cycle‐to‐cycle endurance (>1000 cycles), and low device‐to‐device variability. We are not aware of any other resistive switching memory exhibiting such characteristics, which may open the door for the development of advanced NVMs combining the advantages of filamentary and distributed resistive switching mechanisms.  相似文献   

6.
随着器件尺寸的缩小,阻变存储器(RRAM)具有取代现有主流Flash存储器成为下一代新型存储器的潜力。但对RRAM器件电阻转变机制的研究在认识上依然存在很大的分歧,直接制约了RRAM的研发与应用。通过介绍阻变存储器的基本工作原理、不同的阻变机制以及基于阻变存储器所表现出的不同I-V特性,研究了器件的阻变特性;详细分析了阻变存储器的五种阻变物理机制,即导电细丝(filament)、空间电荷限制电流效应(SCLC)、缺陷能级的电荷俘获和释放、肖特基发射效应(Schottky emission)以及普尔-法兰克效应(Pool-Frenkel);同时,对RRAM器件的研究发展趋势以及面临的挑战进行了展望。  相似文献   

7.
In this paper, the reproducible nonpolar resistive switching is demonstrated in devices with the sandwiched structure of Au/poly(3,4-ethylene-dioxythiophene): polystyrenesulfonate/Au for nonvolatile memory application. The switching between high resistance state (OFF-state) and low resistance state (ON-state) does not depend on the polarity of the applied voltage bias, which is different from both the WORM characteristics and the bipolar switching characteristics reported before. The resistive ratio between the ON- and OFF-state is on the order of 103 and increases with the device area decreasing. Both the ON- and OFF-state of the memory devices are stable, showing no significant degradation over 104 s under continuous readout testing. It is proposed that the reduction and oxidation of PEDOT: PSS film might be the switching mechanism.  相似文献   

8.
Halide perovskites (HPs) can be the effective functional materials for the sneak-path current issue in the memristive crossbar array. Herein, an efficient strategy is proposed to integrate the HPs-based bidirectional threshold and bipolar resistive switches (TS and RS). The resistance change characteristics from volatile threshold to nonvolatile resistive switching are modulated by controlling Ag doping concentration in the MAPbI3. HPs provide the diffusive condition and the quantity of Ag regulates the radius of its network. A low amount of Ag contributes to weak network with a short lifetime. However, when the amount of Ag increases, the conductive filament becomes more robust, showing a long lifetime. A MAPbI3:Ag TS with a low Ag content is developed, showing a steep switching slope (1 mV per decade), fast switching speed (< 80 ns), and low off-current (10 nA). And, a MAPbI3:Ag RS with a high Ag content is developed, showing multilevel storage capability and long retention time (1400 s). Finally, these TS and RS coupled into the 1S-1R integrated component, resulting the development of the maximum crossbar array size to 1.4 × 1012. This study offers an efficient methodology for tailoring the resistance change characteristics and a promising strategy for practical HPs-based memristive crossbar application.  相似文献   

9.
Resistive random access memory (RRAM) based on ultrathin 2D materials is considered to be a very feasible solution for future data storage and neuromorphic computing technologies. However, controllability and stability are the problems that need to be solved for practical applications. Here, by introducing a damage-less ion implantation technology using ultralow-energy plasma, the transport mechanisms of space charge limited current and Schottky emission are successfully realized and controlled in RRAM based on 2D Bi2Se3 nanosheets. The memristors exhibit stable resistive switching behavior with a high resistive switching ratio (>104), excellent cycling endurances (300 cycles), and great retention performance (>104 s). The reliability and controllability of Bi2Se3 memory endowed by oxygen plasma injection demonstrate the great potential of this ultralow-energy ion implantation technology in the application of 2D RRAM.  相似文献   

10.
An all‐oxide transparent resistive random access memory (T‐RRAM) device based on hafnium oxide (HfOx) storage layer and indium‐tin oxide (ITO) electrodes is fabricated in this work. The memory device demonstrates not only good optical transmittance but also a forming‐free bipolar resistive switching behavior with room‐temperature ROFF/RON ratio of 45, excellent endurance of ≈5 × 107 cycles and long retention time over 106 s. More importantly, the HfOx based RRAM carries great ability of anti‐thermal shock over a wide temperature range of 10 K to 490 K, and the high ROFF/RON ratio of ≈40 can be well maintained under extreme working conditions. The field‐induced electrochemical formation and rupture of the robust metal‐rich conductive filaments in the mixed‐structure hafnium oxide film are found to be responsible for the excellent resistance switching of the T‐RRAM devices. The present all‐oxide devices are of great potential for future thermally stable transparent electronic applications.  相似文献   

11.
《Microelectronics Reliability》2015,55(11):2224-2228
A resistive switching random access memory (RRAM) with an HfO2/Ti structure grown on a molybdenum (MO) substrate was fabricated, and a gold (Au) conductive atomic force microscopy (CAFM) tip was used as the top electrode such that the cell area of the resulting RRAM device is as small as 3 × 10−12 cm2. The pre- and post-irradiated resistive switching behaviors of the RRAM device with various HfO2 layer thicknesses were investigated after being subjected to Co60 γ-ray irradiation with different radiation doses. It is found that the forming voltage (Vforming), set voltage (Vset), resistance of high resistance state (RHRS) and resistance of low resistance state (RLRS) of the RRAM device are all radiation dose-dependent. The Vforming, Vset, RHRS and RLRS all decrease as the radiation dose increases due to increasing radiation-induced oxygen vacancies or defects inside the HfO2 layer. Our experimental results indicate that the HfO2-based RRAM cell with an extremely small cell area is not actually radiation hard since the operating voltage will change with Vforming and Vset after irradiation.  相似文献   

12.
The resistive random access memory (RRAM) device has been widely studied due to its excellent memory characteristics and great application potential in different fields. In this paper, resistive switching materials, switching mechanism, and memory characteristics of RRAM are discussed. Recent research progress of RRAM in high-density storage and nonvolatile logic application are addressed. Technological trends are also discussed.  相似文献   

13.
We investigated the resistive switching characteristics of Ir/TiOx/TiN structure with 50 nm active area. We successfully formed ultra-thin (4 nm) TiOx active layer using oxidation process of TiN BE, which was confirmed by X-ray Photoelectron Spectroscopy (XPS) depth profiling. Compared to large area device (50 μm), which shows only ohmic behavior, 250 and 50 nm devices show very stable resistive switching characteristics. Due to the formation and rupture of oxygen vacancies induced conductive filament at Ir and TiOx interface, bipolar resistive switching was occurred. We obtained excellent switching endurance up to 106 times with 100 ns pulse and negligible degradation of each resistance state at 85 °C up to 104 s.  相似文献   

14.
15.
This work addresses a 1T1R RRAM architecture, which allows for the precise and reliable control of the forming/set current by using an access transistor. The 1T1R devices were fabricated in a modified 0.25 μm CMOS technology. The memory cells show stable resistive switching in dc as well as pulse-induced mode with an endurance of 103 and 102 cycles, respectively. The variation of pulse widths as a function of amplitudes in 1R devices confirmed the set process distribution over a wide range of pulse widths (300 ns-100 μA), whereas the reset process variation is confined (1-3 μs).  相似文献   

16.
We reported an ultra low-power resistive random access memory (RRAM) combining a low-cost Ni electrode and covalent-bond GeOx dielectric. This cost-effective Ni/GeOx/TaN RRAM device has very small set power of 2 μW, ultra-low reset power of 130 pW, greater than 1 order of magnitude resistance window, and stable retention at 85 °C. The current flow at low-resistance state is governed by Poole-Frenkel conduction with electrons hopping via defect traps, which is quite different from the filament conduction in metal-oxide RRAM.  相似文献   

17.
The properties of nonvolatile memristive devices (NMD) fabricated utilizing organic/inorganic hybrid nanocomposites were investigated due to their superior advantages such as mechanical flexibility, low cost, low-power consumption, simple technological process in fabrication and high reproducibility. The current-voltage (I-V) curves for the Al/polyvinylpyrrolidone (PVP): graphene quantum-dot (GQD)/indium-tin-oxide (ITO) memristive devices showed current bistability characteristics at 300 K. The window margins corresponding to the high-conductivity (ON) state and the low-conductivity (OFF) state of the devices increased with increasing concentration of the GQDs. The ON/OFF ratio of the optimized device was 1 × 104, which was the largest memory margin among the devices fabricated in this research. The endurance number of ON/OFF switching was above 1 × 102 cycles, and the retention time was relatively constant, maintaining a value above 104 s. The devices showed high reproducibility with the writing voltage being distributed between −0.5 and −1.5 V and the erasing voltage being distributed between 2 and 3 V. The ON state currents remained between 0.02 and 0.03 A, and the OFF state currents stayed between 10−6 and 10−4 A. The carrier transport mechanisms are illustrated by using both the results obtained by fitting the I-V curves and the energy band diagrams of the devices.  相似文献   

18.
Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.  相似文献   

19.
Nonvolatile memories have emerged in recent years and have become a leading candidate towards replacing dynamic and static random-access memory devices. In this article, the performances of TiO2 and TaO2 nonvolatile memristive devices were compared and the factors that make TaO2 memristive devices better than TiO2 memristive devices were studied. TaO2 memristive devices have shown better endurance performances (108 times more switching cycles) and faster switching speed (5 times) than TiO2 memristive devices. Electroforming of TaO2 memristive devices requires~4.5 times less energy than TiO2 memristive devices of a similar size. The retention period of TaO2 memristive devices is expected to exceed 10 years with sufficient experimental evidence. In addition to comparing device performances, this article also explains the differences in physical device structure, switching mechanism, and resistance switching performances of TiO2 and TaO2 memristive devices. This article summarizes the reasons that give TaO2 memristive devices the advantage over TiO2 memristive devices, in terms of electroformation, switching speed, and endurance.  相似文献   

20.
Nonvolatile rewritable organic memory devices based on poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and nitrogen doped multi-walled carbon nanotube (NCNT) nanocomposites were fabricated on glass and PET substrates.Organic memory devices with bistable resistive switching were obtained using very low NCTN concentration (∼0.002 wt%) in the polymeric matrix. The memory devices exhibited a good ON/OFF ratio of approximately three orders of magnitude, a good retention time of 104 s under operating voltages ≤ |4V| and a few hundredths of write-read-erase-read cycles. The bistable resistive switching is mainly attributed to the creation of oxygen vacancies. These defects are introduced into the thin native Al oxide (AlOx) layer on the bottom electrode during the first voltage sweep. The well-dispersed NCNTs immersed in PEDOT:PSS play a key role as conductive channels for the electronic transport, hindering the electron trapping at the AlOx-polymer interface and inducing a soft dielectric breakdown of the AlOx layer. These PEDOT:PSS + NCNTs memory devices are to easy to apply in flexible low-cost technology and provide the possibility of large-scale integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号