首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The magnesium–sulfur (Mg-S) battery has attracted considerable attention as a candidate of post-lithium battery systems owing to its high volumetric energy density, safety, and cost effectiveness. However, the known shuttle effect of the soluble polysulfides during charge and discharge leads to a rapid capacity fade and hinders the realization of sulfur-based battery technology. Along with the approaches for cathode design and electrolyte formulation, functionalization of separators can be employed to suppress the polysulfide shuttle. In this study, a glass fiber separator coated with decavanadate-based polyoxometalate (POM) clusters/carbon composite is fabricated by electrospinning technique and its impacts on battery performance and suppression of polysulfide shuttling are investigated. Mg–S batteries with such coated separators and non-corrosive Mg[B(hfip)4]2 electrolyte show significantly enhanced reversible capacity and cycling stability. Functional modification of separator provides a promising approach for improving metal–sulfur batteries.  相似文献   

2.
    
Lithium–sulfur batteries (LSBs) are regarded as a new kind of energy storage device due to their remarkable theoretical energy density. However, some issues, such as the low conductivity and the large volume variation of sulfur, as well as the formation of polysulfides during cycling, are yet to be addressed before LSBs can become an actual reality. Here, presented is a comprehensive overview illustrating the techniques capable of mitigating these undesirable problems together with the electrochemical performances associated to the different proposed solutions. In particular, the analysis is organized by separately addressing cathode, anode, separator, and electrolyte. Furthermore, to better understand the chemistry and failure mechanisms of LSBs, important characterization techniques applied to energy storage systems are reviewed. Similarly, considerations on the theoretical approaches used in the energy storage field are provided, as they can become the key tool for the design of the next generation LSBs. Afterward, the state of the art of LSBs technology is presented from a geopolitical perspective by comparing the results achieved in this field by the main world actors, namely Asia, North America, and Europe. Finally, this review is concluded with the application status of LSBs technology, and its prospects are offered.  相似文献   

3.
    
Lithium-sulfur batteries are famous for high energy density but prevented by shuttling effect and sluggish electrochemical conversion kinetics due to the high energy barriers of Li+ transport across the electrode/electrolyte interface. Herein, the Li+-solvents dissociation kinetics is catalyzed and stimulated by designing a carbon bridged metal-organic framework (MOF@CC), aimed at realizing increased bare Li+ transport for the rapid conversion kinetics of sulfur species. Theoretical simulations and spectroscopic results demonstrate that the bridged MOF@CC well grants a special transport channel for accelerating Li+ benefited from aggregated anion/cation clusters. Moreover, the C N bridge between -NH2 ligand in MOF and carbon shell enhances electron exchange, and thus promotes polysulfide catalytic efficiency and hinder polysulfide aggregation and accumulation. With the MOF@CC-modified separators, the assembled Li/S batteries deliver a reversible capability of 1063 mAh g-1 at 0.5 C, a capacity retention of 88% after 100 cycles, and a high-rate performance of 765 mAh g−1 at 5 C. Moreover, the large areal pouch cell with 100 µm Li foil and lean electrolyte is capable of stabilizing 855 mAh g−1 after 70 cycles. These results well demonstrate the efficiency of catalyzing desolvation for fast Li+ transport kinetics and the conversion of polysulfides.  相似文献   

4.
    
Lithium-sulfur batteries (LSBs) with high theoretical specific capacities have been regarded as the development direction of next generation energy storage. However, the shuttle effect of lithium polysulfides (LiPSs) and the retardation of conversion kinetics have hindered their industrial application. Herein, Mn selectively doped CoP hollow microspheres are designed and synthesized to trap LiPSs and enhance Li–S reaction kinetics. Mn is successfully doped into (100) surfaces of Co3O4 via simple hydrothermal reaction, whereas it is only excessively accumulated on (111) surfaces. The unique selective doping of Mn not only provides an accurate and controllable synthesis path, but also makes synthesized target products rich in phosphorus defects after thermal shock. The adsorption, electrochemical, and in situ XRD and Raman tests prove its enhancement in adsorption capacity for LiPSs and inhibition of shuttle effect. Meanwhile, density functional theory calculations confirm that the reduced reaction energy barriers accelerate the reduction kinetics of sulfur redox conversion. Therefore, the optimal electrode displays an outstanding cycling stability with a capacity fading rate of just 0.0207% per cycle over 1000 cycles at 1 C. This study provides a novel design to promote the practical use of LSBs by introducing lattice defects, enlightening further developments of LSBs.  相似文献   

5.
    
Anionic redox activity can trigger structural instability in Li-rich Mn-based cathodes. Lattice oxygen activity can be tuned through liquid acid-induced spinel phases and oxygen vacancies. However, the liquid-acid-modified surface is still attacked by the electrolyte. Besides, the underlying mechanism of spinel phase suppression of lattice oxygen activity is controversial. Here, a solid acid strategy for modification is proposed and the underlying mechanism is investigated in detail. Unique solid acid can in situ generate an interface protection layer and remarkably stabilize the structure. Theoretical calculations and experimental characterizations reveal that the spinel phase suppresses the irreversible loss of lattice oxygen by decreasing the O 2p non-bonding energy level and enriching electrons at the layered/spinel phase interface. The inert layer on the surface prevents highly active On− from being attacked by electrolytes. The obtained material exhibits significantly reduced irreversible lattice oxygen release and improved electrochemical performance. After 300 cycles, a slow capacity fading of 0.177 mAh g−1 per cycle and suppressed voltage fading are achieved. This study reveals the regulation method and mechanism for the anion activity of oxide cathodes in next-generation Li-ion batteries.  相似文献   

6.
    
The “shuttle effect” that stems from the dissolution of polysulfides is the most fatal issue affecting the cycle life of lithium‐sulfur (Li–S) batteries. In order to suppress the “shuttle effect,” a new strategy of using a highly lithium ion conductive lithium fluoride/graphene oxide (LiF/GO) solid electrolyte interphase (SEI) to mechanically prevent the lithium dendrite breakthrough is reported. When utilized in Li–S batteries, the LiF/GO SEI coated separator demonstrates significant feature in mitigating the polysulfide shuttling as observed by in situ UV–vis spectroscopy. Moreover, the restrained “shuttle effect” can also be confirmed by analysis of electrochemical impedance spectroscopy and characterization of lithium dendrites, which indicates that no insulating layer of solid Li2S2/Li2S is found on lithium anode surface. Furthermore, the LiF/GO SEI layer puts out good lithium ion conductivity as its lithium ion diffusion coefficient reaches a high value of 1.5 × 10?7 cm2 s?1. These features enable a remarkable cyclic property of 0.043% of capacity decay per cycle during 400 cycles.  相似文献   

7.
Rechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I2) batteries are regarded as promising candidates for large-scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I2 batteries are still restricted by several inherent issues, including the “shuttle effect” of polysulfides/polyselenides/polyiodides (PSs/PSes/PIs), sluggish kinetics of the conversion reactions at the cathodes, and Na dendrite growth at the anodes. Among these challenges, uncontrolled “shuttle effect” of PSs/PSes/PIs is a major contributing factor for the irreversible loss of active cathode materials and severe side reactions on Na metal anodes, leading to rapid failure of the batteries. Separator modification has been demonstrated to be an effective strategy to suppress the shuttling of PSs/PSes/PIs. Herein, the latest achievement in modifying separators for high-performance Na–S/Se/I2 batteries is comprehensively reviewed. The reaction mechanisms of each battery system are first discussed. Then, strategies of separator modification based on the different functions for regulating the transportation of PSs/PSes/PIs are summarized, including applying electrostatic repulsive interaction, introducing conductive layers, improving sieving effects, enhancing chemisorption capability, and adding efficient electrocatalysts. Finally, future perspectives on the practical application of modified separators in high-energy rechargeable batteries are provided.  相似文献   

8.
    
Metal nitride-based heterostructures have been effective polysulfide mediators in lithium-sulfur batteries. Still, these heterostructures developed so far primarily rely on high-temperature ammonification with corrosive NH3 or synthetic nitrogen-contained reagents as nitrogen sources, casting potential environmental hazards, and additional technical challenges. Herein, a multichambered carbon nanofiber host architecture with an in-built TiN/TiO2 heterostructure configuration derived from natural structured proteins is designed. The TiN/TiO2 heterostructure is spontaneously generated in the carbon nanofibers upon the pyrolysis of inborn N-enriched bio-precursor accompanied by thermal-induced topochemical self-nitridation without any additional nitrogen sources. Ex-/in situ experiments with theoretical calculations identify the strong trapping and enhanced charge transfer on the polar heterointerfaces, synchronously realizing the immobilization–diffusion–transformation of polysulfides. The multichambered host framework with rich internal voids and enhanced conductivity promise the accommodation of liquid Li2S6 catholyte, meanwhile ensuring that the cells can work with lean electrolyte. Consequently, the resulted Li-polysulfide cell exhibits an ultralow capacity decay of 0.023% per cycle over 500 cycles and considerable areal capacity (≈6 mAh cm–2) at high S loading (5.8 mg cm–2). Importantly, an ingenious configurated full battery based on lithiated silicon anode and polysulfide cathode is competent to achieve appreciable cyclability with high energy density even under a low negative/positive capacity ratio (≈1.18).  相似文献   

9.
The current research of Li–S batteries primarily focuses on increasing the catalytic activity of electrocatalysts to inhibit the polysulfide shuttling and enhance the redox kinetics. However, the stability of electrocatalysts is largely neglected, given the premise that they are stable over extended cycles. Notably, the reconstruction of electrocatalysts during the electrochemical reaction process has recently been proposed. Such in situ reconstruction process inevitably leads to varied electrocatalytic behaviors, such as catalytic sites, selectivity, activity, and amounts of catalytic sites. Therefore, a crucial prerequisite for the design of highly effective electrocatalysts for Li–S batteries is an in-depth understanding of the variation of active sites and the influence factors for the in situ reconstruction behaviors, which has not achieved a fundamental understanding and summary. This review comprehensively summarizes the recent advances in understanding the reconstruction behaviors of different electrocatalysts for Li–S batteries during the electrochemical reaction process, mainly including metal nitrides, metal oxides, metal selenides, metal fluorides, metals/alloys, and metal sulfides. Moreover, the unexplored issues and major challenges of understanding the reconstruction chemistry are summarized and prospected. Based on this review, new perspectives are offered into the reconstruction and true active sites of electrocatalysts for Li–S batteries.  相似文献   

10.
    
Lithium–sulfur battery possesses a high energy density; however, its application is severely blocked by several bottlenecks, including the serious shuttling behavior and sluggish redox kinetics of sulfur cathode, especially under the condition of high sulfur loading and lean electrolyte. Herein, hollow molybdate (CoMoO4, NiMoO4, and MnMoO4) microspheres are introduced as catalytic hosts to address these issues. The molybdates present a high intrinsic electrocatalytic activity for the conversion of soluble lithium polysulfides, and the unique hollow spherical structure could provide abundant sites and spatial confinement for electrocatalysis and inhibiting shuttling, respectively. Meanwhile, it is demonstrated that the unique adsorption of molybdates toward polysulfides exhibits a “volcano-type” feature with the catalytic performance following the Sabatier principle. The NiMoO4 hollow microspheres with moderate adsorption show the highest electrocatalytic activity, which is favorable for enhancing the electrochemical performance of sulfur cathode. Especially, the S/NiMoO4 composite could achieve a high areal capacity of 7.41 mAh cm−2 (906.2 mAh g−1) under high sulfur loading (8.18 mg cm−2) and low electrolyte/sulfur ratio (E/S, 4 µL mg−1). This work offers a new perspective on searching accurate rules for selecting and designing effective host materials in the lithium–sulfur battery.  相似文献   

11.
At the technological forefront of energy storage, there is still a continuous upsurge in demand for high energy and power density batteries that can operate at a wide range of temperature. Rechargeable lithium sulfur batteries stand out among other advanced cell concepts owing to their ultrahigh theoretical gravimetric energy density characteristic as well as merits of low cost and environmental friendliness. Although achieving good operability of ambient lithium sulfur batteries, extending their workability to both higher and lower temperatures is also of paramount importance especially for future task-specific applications. As a first attempt, this review presents a comprehensive understanding on the advances, challenges, and future research directions on lithium sulfur batteries operating at both low and high temperature extremes. From a material perspective, the workability of sulfur-containing cathode materials, advanced electrolytes (from conventional liquid to quasi- and all-solid-state electrolytes), lithium metal anodes and the electrochemically inert components (separators and interlayer materials) at extreme temperatures are thoroughly analyzed. The insurmountable challenges and mechanistic understandings caused by thermal changes are critically reviewed. Finally, potential future research directions and prospects for lithium sulfur batteries operated at a wide range of temperature are also proposed.  相似文献   

12.
    
Pursuit of advanced batteries with high‐energy density is one of the eternal goals for electrochemists. Over the past decades, lithium–sulfur batteries (LSBs) have gained world‐wide popularity due to their high theoretical energy density and cost effectiveness. However, their road to the market is still full of thorns. Apart from the poor electronic conductivity of sulfur‐based cathodes, LSBs involve special multielectron reaction mechanisms associated with active soluble lithium polysulfides intermediates. Accordingly, the electrode design and fabrication protocols of LSBs are different from those of traditional lithium ion batteries. This review is aimed at discussing the electrode design/fabrication protocols of LSBs, especially the current problems on various sulfur‐based cathodes (such as S, Li2S, Li2Sx catholyte, organopolysulfides) and corresponding solutions. Different fabrication methods of sulfur‐based cathodes are introduced and their corresponding bullet points to achieve high‐quality cathodes are highlighted. In addition, the challenges and solutions of sulfur‐based cathodes including active material content, mass loading, conductive agent/binder, compaction density, electrolyte/sulfur ratio, and current collector are summarized and rational strategies are refined to address these issues. Finally, the future prospects on sulfur‐based cathodes and LSBs are proposed.  相似文献   

13.
The shuttling of soluble lithium polysulfides (LiPSs) is one of the main bottlenecks to the practical use of Li–S batteries. It is reported that in situ synthesized ultrasmall vanadium nitride nanoparticles dispersed on porous nitrogen-doped graphene (denoted VN@NG) as a catalytic interlayer solves this problem. The ultrasmall size of VN particles provide ample triple-phase interfaces (the reactive interfaces among VN nanocatalyst, NG conductive substrate, and electrolyte) for accelerating LiPS conversion and Li2S deposition, which greatly reduces the accumulation of LiPSs in the electrolyte and therefore inhibits the shuttle effect. Their high catalytic activity is confirmed by a reduced activation energy of the Li2S4 conversion step based on temperature-dependent cyclic voltammetric (CV) measurements and the reduced shuttle effect is detected by in situ Raman spectra. With the VN nanocatalyst, Li–S batteries have an outstanding cycling performance with a low capacity decay rate of 0.075% per cycle over 500 cycles at 2 C. A high capacity retention of 84.5% over 200 cycles at 0.2 C is achieved with a high sulfur loading of 7.3 mg cm−2.  相似文献   

14.
The synergetic mechanism of chemisorption and catalysis play an important role in developing high-performance lithium–sulfur (Li–S) batteries. Herein, a 3D lather-like porous carbon framework containing Fe-based compounds (including Fe3C, Fe3O4, and Fe2O3), named FeCFeOC, is designed as the sulfur host and the interlayer on separator. Due to the strong chemisorption and catalytic ability of FeCFeOC composite, the soluble lithium polysulfides (LiPSs) are first adsorbed and anchored on the surface of the FeCFeOC composite and then are catalyzed to accelerate their conversion reaction. In addition, the FexOy in Fe-based compounds can spontaneously react with LiPSs to form magnetic FeSx species with a larger size, further blocking the penetration of LiPSs cross the separator. As a result, the assembled Li–S cells show excellent long-term stability (748 mAh g−1 over 500 cycles at 1.0 C, and ≈0.036% decay per cycle for 1000 cycles at 3.0 C), a superb rate capability with 659 mAh g−1 at 5.0 C, and lower electrochemical polarization. This work introduces a feasible strategy to anchor and accelerate the conversion of LiPSs by designing the multifunctional Fe-based compounds with high chemisorption and catalytic activity, which advances the large-scale application of high-performance Li–S batteries.  相似文献   

15.
    
Aqueous zinc-ion batteries (ZIBs) are a promising candidate for fast-charging energy-storage systems due to its attractive ionic conductivity of water-based electrolyte, high theoretical energy density, and low cost. Current strategies toward high-rate ZIBs mainly focus on the improvement of ionic or electron conductivity within cathodes. However, enhancing intrinsic electrochemical reaction kinetics of active materials to achieve fast Zn2+ storage has been greatly omitted. Herein, for the first time, stable radical intermediate generation is demonstrated in a typical organic electrode material (methylene blue [MB]), which effectively decreases the reaction energy barrier and enhances the intrinsic kinetics of MB cathode, enabling ultrafast Zn2+ storage. Meanwhile, anionic co-intercalation essentially avoids MB molecules rearranging their configuration and sharing Zn2+ with adjacent functional groups, thus keeps the structure stable. As a result, Zn–MB batteries exhibit an excellent rate capability up to 500C and ultralong life of 20 000 cycles with a negligible 0.07% capacity decay per cycle at 100C, which is superior to that of most reported aqueous ZIBs batteries. This work provides a novel strategy of stable radical chemistry for ultrafast-charging aqueous ZIBs, which can be introduced to other appropriate organic materials and multivalent ion battery systems.  相似文献   

16.
    
Transition-metal compound based heterostructures hold promise but challenge in expediting stepwise sulfur redox because of their inferior adsorption-catalysis activity and unclear mechanism in Li–S batteries (LSBs). Herein, the p-band centers and interfacial charge rearrangement of Mo-doped VS2/MXene heterostructure are tuned through Mo doping and built-in electric field (BIEF) effect to boost dual-directional sulfur redox. Experimental and theoretical calculations demonstrate that Mo doping tunes the p-band center of active S in VS2, shifting it positively toward the Fermi level to enhance the polysulfide adsorption ability and electrocatalytic activity. Whereas BIEF between Mo-VS2 and MXene accelerates electrons transfer from MXene to Mo-VS2 surface, generating more electrons accumulation at the surface-S sites. Their synergy accelerates sulfur-species conversion by reducing the energy barrier of polysulfide reduction and Li2S oxidation. Ultimately, S/Mo-VS2/MXene cathode exhibits large initial capacity of 1387 mAh g−1at 0.2 C and stable 500-cycle long-term lifespan at 0.5 C. Impressively, the thick S/Mo-VS2/MXene cathode (S loading: 5.4 mg cm−2, lean electrolyte: 4.5 µL mgsulfur−1) achieves a high areal capacity of 6.44 mAh cm−2 with 91.5% retention for 61 cycles. This work highlights the synergistic strategy of doping engineering and BIEF to tune the p-band centers and interfacial charge rearrangement for designing high-performance LSBs.  相似文献   

17.
18.
The poor cycling stability and low volumetric energy density of lithium–sulfur batteries compared with lithium-ion batteries are hindering their practical applications. Here, it is demonstrated that a dense sulfur electrode containing heavy TiS2/TiO2@MXene heterostructures can tackle these issues. It is observed that the TiO2 part functionally anchors the lithium polysulfides through the strong chemical affinity, and the TiS2 part serves as an efficient electrocatalyst to enhance the kinetics of sulfur evolution reactions. Benefitting from these synergistic effects, the TiS2/TiO2@MXene heterostructures effectively suppress the shuttle effects, leading to superior cyclability of the sulfur cathode with a low capacity decay of 0.038% per cycle for 500 cycles at a current rate of 1 C. More encouragingly, a highly dense S/TiS2/TiO2@MXene cathode exhibits a high volumetric energy density of 2476 Wh L−1 (based on the volume of the composite) at a high sulfur mass loading of 7.5 mg cm−2 and lean electrolyte of 5 µL mg−1. The electrochemical performance is comparable to or even superior to the lithium-ion and lithium–sulfur batteries reported in the literature. This study provides an effective strategy to design stable and high-volumetric-energy-density lithium–sulfur batteries for practical energy storage applications.  相似文献   

19.
    
Rational design of sulfur host materials with high electrical conductivity and strong polysulfides (PS) confinement is indispensable for high‐performance lithium–sulfur (Li–S) batteries. This study presents one type of new polymer material based on main‐chain imidazolium‐based ionic polymer (ImIP) and carbon nanotubes (CNTs); the polymer composites can serve as a precursor of CNT/NPC‐300, in which close coverage and seamless junction of CNTs by N‐doped porous carbon (NPC) form a 3D conductive network. CNT/NPC‐300 inherits and strengthens the advantages of both high electrical conductivity from CNTs and strong PS entrapping ability from NPC. Benefiting from the improved attributes, the CNT/NPC‐300‐57S electrode shows much higher reversible capacity, rate capability, and cycling stability than NPC‐57S and CNTs‐56S. The initial discharge capacity of 1065 mA h g?1 is achieved at 0.5 C with the capacity retention of 817 mA h g?1 over 300 cycles. Importantly, when counter bromide anion in the composite of CNTs and ImIP is metathesized to bis(trifluoromethane sulfonimide), heteroatom sulfur is cooperatively incorporated into the carbon hosts, and the surface area is increased with the promotion of micropore formation, thus further improving electrochemical performance. This provides a new method for optimizing porous properties and dopant components of the cathode materials in Li–S batteries.  相似文献   

20.
    
Lithium-rich transition metal cathodes can deliver higher capacities than stoichiometric materials by exploiting redox reactions on oxygen. However, oxidation of O2− on charging often results in loss of oxygen from the lattice. In the case of Li2MnO3 all the capacity arises from oxygen loss, whereas doping with Ni and/or Co leads to the archetypal O-redox cathodes Li[Li0.2Ni0.2Mn0.6]O2 and Li[Li0.2Ni0.13Co0.13Mn0.54]O2, which exhibit much reduced oxygen loss. Understanding the factors that determine the degree of reversible O-redox versus irreversible O-loss is important if Li-rich cathodes are to be exploited in next generation lithium-ion batteries. Here it is shown that the almost complete eradication of O-loss with Ni substitution is due to the presence of a less Li-rich, more Ni-rich (nearer stoichiometric) rocksalt shell at the surface of the particles compared with the bulk, which acts as a self-protecting layer against O-loss. In the case of Ni and Co co-substitution, a thinner rocksalt shell forms, and the O-loss is more abundant. In contrast, Co doping does not result in a surface shell yet it still suppresses O-loss, although less so than Ni and Ni/Co doping, indicating that doping without shell formation is effective and that two mechanisms exist for O-loss suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号