首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Solar-driven vapor generation offers an affordable and sustainable approach to solve global freshwater scarcity. Creating interfacial solar evaporators capable of increasing water production rates matching human water requirements is highly desirable but challenging due to the slow water transportation dynamics and unavoidable oil-fouling. Herein, a bio-inspired lotus-petiole-mimetic microstructured graphene/poly(N-acryloyl glycinamide) solar evaporator with integrated hydrophilic and hydrophobic microregions is developed. Through accurate control of the supramolecular interactions, the optimized solar evaporator incorporating unique structural features and wettability shows high light harvesting, enhanced water activation, and reduced energy demand for water vaporization, enabling a groundbreaking comprehensive performance along evaporation rate up to 3.4 kg m−2 h−1 and energy conversion efficiency of ≈93% under one sun irradiation (1 kW m−2). Molecular dynamics simulations reveal that the abundant hydrogen bonding sites of the polymeric networks can thermodynamically modulate the escape behavior of water molecules. Notably, neither decrease in evaporation rate nor fouling on solar evaporators is observed during the prolonged purification process toward nano/submicrometer emulsions, oily brines, actual seawater, and domestic wastewater. This study provides distinctive insights into water evaporation behaviors at a molecular level and pioneers a rational strategy to design high-yield freshwater-generation systems for wastewater containing complex contaminants.  相似文献   

2.
Photothermal conversion, heat localization and water supply are the keys to achieving efficient solar-driven interfacial evaporation. However, effective coupling between the three aspects at the air/liquid interface remains challenging. Herein, Au@Ag-Pd trimetallic nanostructure/polystyrene (PS) microsphere Janus structures are designed as the solar absorber and thermal insulator. The Janus structures deposited on a water supply layer act as a 2D interfacial solar evaporator. The PS microsphere localizes heat at micrometer scale and enhances plasmonic absorption of the Au@Ag-Pd nanocrystals supported on the microsphere. Meanwhile, the Janus structures divide the surface of water supply layer into multiple regions with sub-micrometer depths, lowering the evaporation enthalpy. Owing to the synergic effects of these components, the evaporator realizes a solar-to-vapor conversion efficiency of 99.1% and an evaporation rate of 3.04 kg m−2 h−1 in pure water under 1 sun illumination. The efficient solar-driven evaporation can last for over 40 h. Furthermore, the solar evaporator shows high-performance seawater desalination with salt removal ratios of near 100%. This study brings new insights for controlling evaporation thermodynamics and kinetics. The Janus nano-micro structure design can be extended to other systems for various solar-thermal applications.  相似文献   

3.
To alleviate the severe water crisis, an interfacial solar evaporator provides a promising method to produce freshwater. Although many superior solar evaporators present high evaporation rates by reducing the water evaporation enthalpy, adapting sustainable materials to construct high-efficiency solar evaporators remains challenging. Herein, inspired by the corncob pith's structure and functional groups, interconnected porous cellulose hydrogel is proposed by crosslinking sustainable hydroxypropyl cellulose. Benefiting from the porous structure and abundant hydroxy group, the corncob pith/carbon nanotubes (CNTs) and cellulose hydrogel/CNTs evaporators show a low evaporation enthalpy of 880.5 ± 42.1 and 1280.7 ± 57.8 J g−1 due to the reduced hydrogen bond numbers between water molecules and enable evaporation rates of 3.06 and 2.56 kg m−2 h−1, respectively. Moreover, the evaporators present superior purification performance for seawater and sewage, and show excellent anti-biological fouling properties under light irradiation. It is anticipated that the bionic strategy would provide an in-depth understanding of designing next-generation sustainable solar evaporators in the framework of the dual-carbon concept.  相似文献   

4.
Hydrogel-based solar evaporators (HSEs) emerged as energy-efficient designs for water purification due to the reduced vaporization enthalpy in the hydrated polymeric network. However, it remains challenging for HSEs to achieve stable performance in desalination, partly due to the tradeoff between desired evaporation dynamics and salt tolerance. Here, composite hydrogels with tunable self-assembled nanofiber networks are exploited for the engineering of solar evaporators with both high evaporation performance and resistance to salt accumulation. The nanofibrous hydrogel solar evaporators (NHSEs) present an intrinsic open network with high porosity, above 90%, enabling continuous water channels for efficient mass transfer. Theoretical modeling captures the complex nexus between microstructures and evaporation performance by coupling water transfer, thermal conduction, and vaporization enthalpy during evaporation. The mechanistic understanding and engineering tuning of the composites lead to an optimum configuration of NHSEs, which demonstrate a stable evaporation rate of 2.85 kg m−2 h−1 during continuous desalination in 20% brine. The outstanding performance of NHSEs and the underlying design principles may facilitate further development of practical desalination systems.  相似文献   

5.
Passive solar-driven interfacial evaporation is an environmental-friendly approach for seawater desalination. However, non-volatile salts usually precipitate on the evaporator surface during evaporation, significantly reducing the evaporation rate and blocking the evaporator. Although several strategies have been proposed for this issue, they are usually only effective under low salinity conditions and natural solar irradiation. In this study, a scalable solar evaporator is proposed, which is expediently fabricated by carbonizing the commercially available coconut fiber cloth, through designing and optimizing an asymmetric bi-layer structure with a trapezoidal evaporation surface and a wide leg-strengthened water supply pathway. Both experimental and simulation results indicate that the evaporator presents ultra-high salt tolerance, which keeps running steadily for consecutive 14 days under the high salinity of 14 wt% NaCl and high irradiation of 4 suns. This excellent salt resistance arises from a diode-like ion migration introduced by its asymmetric structure. Meanwhile, a remarkable evaporation rate of 7.28 kg m−2 h−1 is also achieved under the harsh condition, resulting from the high solar absorbance and the reduced evaporation enthalpy of the evaporator. Such an evaporator is confirmed as a simple, low-cost, scalable, efficient, and long-term stable device for producing freshwater under harsh desalination conditions.  相似文献   

6.
The rational design of economic and high-performance electrocatalytic water-splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion-assisted electrocatalytic process provides a promising novel approach to effectively boost its performance. Herein, a self-sustained water-splitting system originated from the heterostructure of perovskite oxide with 2D Ti3C2Tx MXene on Ni foam (La1-xSrxCoO3/Ti3C2Tx MXene/Ni) that shows high activity for solar-powered water evaporation and simultaneous electrocatalytic water splitting is presented. The all-in-one interfacial electrocatalyst exhibits highly improved oxygen evolution reaction (OER) performance with a low overpotential of 279 mV at 10 mA cm−2 and a small Tafel slope of 74.3 mV dec−1, superior to previously reported perovskite oxide-based electrocatalysts. Density functional theory calculations reveal that the integration of La0.9Sr0.1CoO3 with Ti3C2Tx MXene can lower the energy barrier for the electron transfer and decrease the OER overpotential, while COMSOL simulations unveil that interfacial solar evaporation could induce OH enrichment near the catalyst surfaces and enhance the convection flow above the catalysts to remove the generated gas, remarkably accelerating the kinetics of electrocatalytic water splitting.  相似文献   

7.
The emerging solar desalination by interfacial evaporation shows great potential for alleviating the global freshwater crisis. However, salt deposition on the whole evaporation surface during steam generation leads to a deterioration in the evaporation rate and long-term stability. Herein, it is demonstrated that a hydrogel-based 3D structure can serve as an efficient and stable solar evaporator by salt localized crystallization for high-salinity brine desalination. Under the function of micron-grade brine transport management and edge-preferential crystallization promoted by this novel design, this 3D hydrogel evaporator exhibits a superior salt-resistant property without salt deposition on the photothermal surface even in 20 wt% brine for continuous 24-h illumination. Moreover, by virtue of the synergistic effect of the promising 3D structure and excellent water transport of hydrogel, the proposed evaporator possesses an excellent evaporation performance achieving 2.07 kg m−2 h−1 on average in a high-salinity brine (from 10 to 25 wt% NaCl) under 1 sun irradiation, among the best values reported in the literature. With stable and efficient evaporation performance out of high-salinity brine, this design holds great potential for its applications in sustainable solar desalination.  相似文献   

8.
A three-plasmon hybrid, in which core–shell Au@Cu2−xS hybrids are bonded with ultrathin Ti3C2Tx MXene, is prepared for high-efficiency photothermal conversion and membrane-based solar water evaporation for the first time. The MXene/Au nanorod@Cu2−xS hybrids display excellent photothermal conversion efficiency under irradiation of an 808 laser, causing by the three-plasmon-induced synergistic plasmonic absorption and heating effects as well as the multichannel charge transfer between the components. Then, Au nanosphere@Cu2−xS and Au nanorod@Cu2−xS hybrids are mixed and combined with MXene to serve as the membrane material, which shows excellent light absorption ranging from ultraviolet to near-infrared region. By transferring the membrane materials on a hydrophilic cotton piece, the as-prepared photothermal membrane displays a high evaporation rate of 2.023 kg m−2 h−1 and light-to-heat conversion efficiency of 96.1% under 1-sun irradiation due to the synergistic photothermal conversion and over 96% of solar light absorption efficiency. Furthermore, a home-made solar evaporation device enabling automatic inflow of untreated water and outflow of evaporated water is designed based on the principles of liquid pressure and connectors. The seawater desalination and sewage treatment experiments performed on the device and membrane indicate the great potential in solar-light-driven water purification and drinkable water generation.  相似文献   

9.
Conversion of solar energy into heat for water evaporation is of great significance to provide clean and sustainable technology for water purification by using inexhaustible sunlight. In this field, one of the challenges comes from the design of high-performance photothermal materials powerful in light harvesting, light-to-heat conversion, and water activation. Herein, it is demonstrated that rationalization of the ionic covalent organic framework (iCOF) can simultaneously satisfy these multiple requirements and a new iCOF STTP is constructed through the Schiff base chemistry in a rapid microwave-assisted solvothermal route by using a hydrophilic dye molecule safranineT as the ionic building block. The integrated dye-related ionic moieties greatly strengthen the light absorbance (>97%) throughout the entire solar spectrum from UV–vis to the infrared region. The framework ionic moieties provide strong polarization to reduce the exciton dissociation energy for enhanced photothermal effect, and in addition, promote sufficient water activation to decrease the water evaporation enthalpy. As an outcome, the STTP driven solar water evaporator affords a fast water evaporation rate of 3.55 kg h−1 m−2 and high solar-to-vapor efficiency of 95.8%. This study highlights the potential of designing iCOF materials for photothermal applications.  相似文献   

10.
Solar-driven interfacial evaporation is an emerging technology with a strong potential for applications in water distillation and desalination. However, the high-cost, complex fabrication, leaching, and disposal of synthetic materials remain the major roadblocks toward large-scale applications. Herein, the benefits offered by renewable bacterial cellulose (BC) are considered and an all-cellulose-based interfacial steam generator is developed. In this monolithic design, three BC-based aerogels are fabricated and integrated to endow the 3D steam generator with well-defined hybrid structures and several self-contained properties of lightweight, efficient evaporation, and good durability. Under 1 sun, the interfacial steam generator delivers high water evaporation rates of 1.82 and 4.32 kg m−2 h−1 under calm and light air conditions, respectively. These results are among the best-performing interfacial steam generators, and surpass a majority of devices constructed from cellulose and other biopolymers. Importantly, the first example of integrating solar-driven interfacial evaporation with water wave detection is also demonstrated by introducing a self-powered triboelectric nanogenerator (TENG). This work highlights the potential of developing biopolymer-based, eco-friendly, and durable steam generators, not merely scaling up sustainable clean water production, but also discovering new functions for detecting wave parameters of surface water.  相似文献   

11.
Interfacial solar steam generation offers a promising and cost-effective way for saline water desalination. However, salt accumulation and deposition on photothermal materials during saline and brine evaporation is detrimental to the stability and sustainability of solar evaporation. Although several antisalt strategies are developed, it is difficult to simultaneously achieve high evaporation rates ( > 2.0 kg m−2 h−1) and energy efficiencies. In this study, a self-rotating photothermal evaporator with dual evaporation zones (i.e., high-temperature and low-temperature evaporation zones) is developed. This photothermal evaporator is sensitive to weight imbalance ( < 15 mg) thus is able to quickly respond to salt accumulation by rotation to refresh the evaporation surface, while the dual evaporation zones optimize the energy nexus during solar evaporation, simultaneously realizing excellent salt-resistant performance and high evaporation rate (2.6 kg m−2 h−1), which can significantly contribute to the real-world application of solar steam generation technology.  相似文献   

12.
Solar-driven interfacial evaporation has emerged as an innovative and sustainable technology for efficient, clean water production. Real-world applications depend on new classes of low-cost, lightweight, and robust materials that can be integrated into one monolithic device, which withstands a variety of realistic conditions on open water. Self-repairing building blocks are highly desired to prevent permanent failures, recover original functions and maintain the lifetime of interfacial steam generators, although related studies are scarce to date. For the first time, a monolithic, durable, and self-floating interfacial steam generator with well-defined structures is demonstrated by integrating self-healing hydrogels through facile processes in surface modulation and device fabrication. High and stable water evaporation rates over 2.0 kg m−2 h−1 are attained under 1 sun on both fresh water and brine with a broad range of salinity (36–210 g kg−1). The solar evaporation and desalination performance are among the best-performing interfacial steam generators and surpass a majority of devices that are constructed by composite polymers as structural components. This study provides a perspective and highlights the future opportunities in self-healing and damage-tolerant materials that can simultaneously improve the performance, durability, and lifetime of interfacial steam generators in real-world applications.  相似文献   

13.
Perovskite quantum dots (PQDs) have attracted much attention in the field of photoelectrochemical (PEC) sensors owing to their superb optical properties and efficient charge transport, but the inherent poor stability severely hinders their PEC applications. Herein, hydrolysis-resistant CsPbBr3/reduced graphene oxide nanoscrolls (CsPbBr3/rGO NSs) are obtained by solvent-assisted self-rolling process toward water-stable PEC sensors. CsPbBr3 QDs embedded in rGO nanosheets can be prevented from water since the multilayer rGO shell layers, which maintains excellent optical properties. On account of strong interfacial interactions, rGO nanosheets are crimped spontaneously with CsPbBr3 QDs, which offer access to superb structural and long-term storage stability. Moreover, appropriate band alignment and ultrafast interfacial carrier transfer enable CsPbBr3/rGO NSs to exhibit greatly enhanced anode photocurrent response for subsequent PEC sensing. As a demonstration, the molecular imprinted PEC sensors for two kinds of mycotoxins (aflatoxin B1 or ochratoxin A) presents an ultra-high sensitivity and good anti-interference ability. Significantly, this work provides an inspirable and convenient route for hydrolysis-resistant PQDs-based optoelectronic and photoelectrocatalytic applications in aqueous ambience.  相似文献   

14.
Designing well-defined interfacial chemical bond bridges is an effective strategy to optimize the catalytic activity of metal–organic frameworks (MOFs), but it remains challenging. Herein, a facile in situ growth strategy is reported for the synthesis of tightly connected 2D/2D heterostructures by coupling MXene with CoBDC nanosheets. The multifunctional MXene nanosheets with high conductivity and ideal hydrophilicity as bridging carriers can ensure structural stability and sufficient exposure to active sites. Moreover, the Co–O–Ti bond bridging formed at the interface effectively triggers the charge transfer and modulates the electronic structure of the Co-active site, which enhances the reaction kinetics. As a result, the optimized CoBDC/MXene exhibits superior hydrogen evolution reaction (HER) activity with low overpotentials of 29, 41, and 76 mV at 10 mA cm−2 in alkaline, acidic, and neutral electrolytes, respectively, which is comparable to commercial Pt/C. Theoretical calculation demonstrates that the interfacial bridging-induced electron redistribution optimizes the free energy of water dissociation and hydrogen adsorption, resulting in improved hydrogen evolution. This study not only provides a novel electrocatalyst for efficient HER at all pH conditions but also opens up a new avenue for designing highly active catalytic systems.  相似文献   

15.
Plasmonic nanoparticles (NPs), such as Au, Ag, and Cu, are considered as promising photothermal materials and attract extensive attention for freshwater production by solar steam generation. However, high cost, narrow absorption range and/or poor stability greatly limit their practical applications. Herein, a high-efficiency solar energy conversion material consisting of low-cost non-metal, extremely thermally-stable plasmonic TiN NPs and hydrophilic semi-reduced graphene oxide (semi-rGO), with broadband solar absorption capability, by a fast in situ microwave reduction method is prepared. The 2D semi-rGO serves as a support for the loading of plasmonic NPs, and meanwhile accelerates the transport and evaporation of water due to its hydrophilicity. Then, decoration of plasmonic TiN NPs further enhances the solar photon absorption and hydrophilicity while suppressing the heat loss, thanks to the layered structure of TiN/semi-rGO, improving overall solar energy utilization. Owing to the enhanced absorption and unique layered nanostructure with strong interfacial interaction, the optimal sample of TiN/semi-rGO-25% absorber achieves a high and stable water evaporation rate of ≈1.76 kg m−2 h−1 with an energy efficiency as high as 99.1% under 1 sun illumination. Furthermore, this plasmonic TiN/semi-rGO absorber is capable of producing high-quality freshwater from sustainable seawater desalination and wastewater purification processes.  相似文献   

16.
Human skin shows self‐adaptive temperature regulation through both enhanced heat dissipation in high temperature environments and depressed heat dissipation in cold environments. Inspired by such thermal regulation processes, an interfacial material system with self‐adaptive temperature regulation in the solar‐driven interfacial evaporation system, which can exhibit automatic temperature oscillation to enable pyroelectricity generation while producing water vapor, is reported. The bioinspired interface system is designed with the combination of a thermochromism‐based temperature regulator consisting of tungsten‐doped vanadium dioxide nanoparticles and a polymeric pyroelectric thin film of polyvinylidene fluoride. Under the simulated solar illumination with power density of 1.1 kW m?2, the bioinspired interfacial evaporation system achieves a self‐adaptive temperature oscillation with the maximum temperature difference of ≈7 °C and this system can simultaneously generate water vapor as well as electricity with an evaporation efficiency of 71.43% and a maximum output electrical power density of 104 µW m?2, respectively. The study demonstrates a design of thermal management at the interface of solar‐driven evaporation system to exhibit a self‐adaptive temperature oscillation and offers an alternative approach for the multifunctional harvesting of solar energy.  相似文献   

17.
The development of an efficient pH-universal hydrogen evolution reaction (HER) electrocatalyst is essential for practical hydrogen production. Here, an efficient and stable pH-universal HER electrocatalyst composed of the strongly coupled 2D NiCo2S4 and 2D ReS2 nanosheets (NiCo2S4/ReS2) is demonstrated. The NiCo2S4/ReS2 2D–2D nanocomposite is directly grown on the surface of the carbon cloth substrate, which exhibits excellent HER performance with overpotentials of 85 and 126 mV at a current density of 10 mA cm−2 and Tafel slopes of 78.3 and 67.8 mV dec−1 under both alkaline and acidic conditions, respectively. Theoretical and experimental characterizations reveal that the chemical coupling between NiCo2S4 and ReS2 layers induces electron transfer from Ni and Co to interfacial Re-neighbored S atoms, enabling beneficial H atom adsorption and desorption for both acidic and alkaline HER. Simultaneously, an electron transfer-induced spin-crossover generates high-spin interfacial Ni and Co atoms that promote water dissociation kinetics at the NiCo2S4/ReS2 interface, which is the origin of the superior alkaline HER activity. NiCo2S4/ReS2 also shows decent catalytic activity and long-term durability for oxygen evolution reaction, and finally bifunctionality for overall water splitting. This study suggests a rational strategy to enhance water dissociation kinetics by inducing spin-crossover via electron transfer.  相似文献   

18.
Safe and clean freshwater harvesting from (organic-containing) saline or wastewater holds great potential for mitigating water scarcity and pollution, but remains challenging. Herein, a floating photothermal/catalytic-integrated interfacial micro-evaporator (g-C3N4@PANI/PS) is reported as a proof-of-concept multifunctional scavenger evaporator system (MSES) to achieve both solar-driven complete desalination and organic degradation. The spherical porous lightweight polystyrene core, incorporated with a black surface functional layer (g-C3N4@PANI), enables the hybrid micro-evaporator to naturally float and thereby collectively self-assemble under surface tension for interfacial evaporation, which achieves preeminent self-cleaning for complete salt/solute separation and efficient organic photodegradation under rotation. Remarkably, the floating micro-evaporator achieves a high solar-vapor conversion efficiency of ≈90% with high interfacial energy localization and provides abundant active photocatalytic sites on the interface, which is further enhanced by interfacial photothermal cooperation. High photo-driven degradation efficiencies of 99% for nonvolatile organic compounds (non-VOC) bisphenol A and 95% for VOC phenol in wastewater are achieved. An outdoor comprehensive solar water treatment test toward organic-containing high-salinity sewage verifies the feasibility of MSES for sustainable freshwater harvesting (1.3 kg m−2 h−1), downstream salt recovery, and organic degradation. This strategy may inspire an integrated solution of water scarcity, clean energy, and environmental pollution toward carbon neutrality.  相似文献   

19.
Recently, owing to the great structural tunability, excellent photothermal property, and strong photobleaching resistance, organic-small-molecule photothermal materials are proposed as promising solar absorbent materials. Herein, through fusing two strong electron-withdrawing units dibenzo[f,h]quinoxaline and anthraquinone units, a rigid planar acceptor dibenzo[a,c]naphtho[2,3-h]phenazine-8,13-dione (PDN) with stronger electron-withdrawing ability is obtained and used to construct donor–acceptor-type organic-small-molecule solar-energy-absorbing material, 2,17-bis(diphenylamino)dibenzo[a,c]naphtho[2,3-h]phenazine-8,13-dione (DDPA-PDN). The new compound exhibits a strong intramolecular charge transfer character and conjugates rigid plane skeleton, endowing it with a broadband optical absorption from 300 to 850 nm in the solid state, favorable photothermal properties, high photothermal conversion ability, and good photobleaching resistance. Under laser irradiation at 655 nm, the solid photothermal conversion efficiency of the resulting DDPA-PDN molecule reaches 56.23%. Additionally, DDPA-PDN-loaded cellulose papers equipped with abundant microchannels for water flow are integrated with thermoelectric devices, thus achieving an evaporation rate and voltage as high as 1.07 kg m−2 h−1 and 83 mV under 1 kW m−2 solar irradiation, respectively. This study demonstrates the application of photothermal organic-small-molecules in water evaporation and power generation, therefore offering a valuable prospect of their utilization in solar energy harvesting.  相似文献   

20.
Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS-MoS2) are designed and synthesized as anode materials for lithium/sodium-ion batteries via a facile one-step hydrothermal method. Phase transition and built-in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS-MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long-term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li-ion half-cells. Superior cycling and rate performance are also presented in sodium half-cells and Li/Na full cells, demonstrating a promising practical application of the MnS-MoS2 electrode. This work is anticipated to afford an in-depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号