首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manipulating liquid metal inks to create conductive microstructures has attracted widespread interest as liquid metal microstructures are turning into influential components in flexible electronics. However, it is challenging to prevent the issues with low precision, low efficiency, and residue caused by sedimentation, free diffusion, and the Marangoni effect. Inspired by the water transport in plants, the wetting-induced assembly method based on the differential capillary effect for liquid metal ink is created to realize the facile and rapid manufacture of liquid metal conductive microstructures. The single-micron accuracy circuits with a minimum of ≈4 µm straight lines are fabricated to a centimeter scale. This method can also be extended to the preparation of multilayer circuits (minimum 5 µm through hole). The resulting entirely flexible stretchable circuits make it possible to construct highly stretchable devices, such as flexible transparent conductors and stretching sensors. Transparent conductors exhibit excellent mechanical (maximum ≈750% tensile rupture limit) and optoelectronic properties (the transmittance reaches ≈87% and the sheet resistance is ≈0.5 Ω/□)|making them suitable for optically-clear electromagnetic shielding. This study offers a fresh and plain approach to solving the assembly problem of liquid metal inks, paving the way for the creation of flexible electronic devices  相似文献   

2.
The ever-increasing popularity of smart electronics demands advanced Li-ion batteries capable of charging faster and storing more energy, which in turn stimulates the innovation of electrode additives. Developing single-phase conductive networks featuring excellent mechanical strength/integrity coupled with efficient electron transport and durability at high-voltage operation should maximize the rate capability and energy density, however, this has proven to be quite challenging. Herein, it is shown that a 2D titanium carbide (known as MXene) metallic membrane can be used as single-phase interconnected conductive binder for commercial Li-ion battery anode (i.e., Li4Ti5O12) and high-voltage cathodes (i.e., Ni0.8Mn0.1Co0.1O2). Electrodes are fabricated directly by slurry-casting of MXene aqueous inks composited with active materials without any other additives or solvents. The interconnected metallic MXene membrane ensures fast charge transport and provides good durability, demonstrating excellent rate performance in the Li//Li4Ti5O12 cell (90 mAh g−1 at 45 C) and high reversible capacity (154 mAh g−1 at 0.2 C/0.5 C) in Li//Ni0.8Mn0.1Co0.1O2 cell coupled with high-voltage operation (4.3 V vs Li/Li+). The LTO//NMC full cell demonstrates promising cycling stability, maintaining capacity retention of 101.4% after 200 cycles at 4.25 V (vs Li/Li+) operation. This work provides insights into the rational design of binder-free electrodes toward acceptable cyclability and high-power density Li-ion batteries.  相似文献   

3.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   

4.
Metallic mesh materials are promising candidates to replace traditional transparent conductive oxides such as indium tin oxide (ITO) that is restricted by the limited indium resource and its brittle nature. The challenge of metal based transparent conductive networks is to achieve high transmittance, low sheet resistance, and small perforation size simultaneously, all of which significantly relate to device performances in optoelectronics. In this work, trilayer dielectric/metal/dielectric (D/M/D) nanomesh electrodes are reported with precisely controlled perforation size, wire width, and uniform hole distribution employing the nanosphere lithography technique. TiO2/Au/TiO2 nanomesh films with small hole diameter (≤700 nm) and low thickness (≤50 nm) are shown to yield high transmittance (>90%), low sheet resistance (≤70 Ω sq?1), as well as outstanding flexural endurance and feasibility for large area patterning. Further, by tuning the surface wettability, these films are applied as easily recyclable flexible electrodes for electrochromic devices. The simple and cost‐effective fabrication of diverse D/M/D nanomesh transparent conductive films with tunable optoelectronic properties paves a way for the design and realization of specialized transparent electrodes in optoelectronics.  相似文献   

5.
We demonstrate a simple but effective method to control the orientation of silver nanowires (AgNWs). Shear-flow-induced AgNW preferable orientation is realized by judiciously controlling the process parameters in the bar-coating method. This controllability of the NW direction enables the formation of AgNW cross-linking networks for transparent conductive electrode (TCE) applications. We experimentally demonstrate that the orthogonally weaved AgNW networks possess predominant advantages of lower percolation limit, higher transmission, and lower sheet resistance compared with the randomly orientated AgNW counterparts. The phenomenon is also confirmed with theoretical calculation by the Monte Carlo method. These high-quality AgNW TCEs exhibit a high transmittance of ∼94% with a sheet resistance of ∼20 Ω/sq, which meet the requirements of modern optoelectronic devices. Very efficient organic light-emitting diodes (OLEDs) and organic solar cells (OSCs) prepared by these AgNW TCEs are demonstrated. The OLED exhibits exceptionally high luminance efficiency, power efficacy, and external quantum efficiency of 92 cd/A, 111 lm/W, and 26.8%, respectively. The OSCs also deliver a high power conversion efficiency of up to 7.5%.  相似文献   

6.
MXenes, 2D transition metal carbides, and nitrides have attracted tremendous interest because of their metallic conductivity, solution processability, and excellent merits in energy storage and other applications. However, the pristine MXene films often suffer from poor ambient stability and mechanical properties that stem from their polar terminal groups and weak interlayer interactions. Here, a heteroatom doping strategy is developed to tailor the surface functionalities of MXene, followed by the addition of large-sized reduced graphene oxide (rGO) as conductive additives to achieve a scalable production of S, N-MXene/rGO (SNMG-40) hybrid film with high mechanical strength ( ≈ 45 MPa) and energy storage properties (698.5 F cm−3). Notably, the SNMG-40 film also demonstrates long-term cycling stability ( ≈ 98% capacitance retention after 30 000 cycles), which can be maintained under ambient condition or immersed in H2SO4 electrolyte for more than 100 days. The asymmetric supercapacitor (aMGSC) based on SNMG-40 film shows an ultrahigh energy density of 22.3 Wh kg−1, which is much higher than those previously reported MXene-based materials. Moreover, the aMGSC also provides excellent mechanical durability under different deformation conditions. Thus, this strategy makes MXene materials more competitive for real-world applications such as flexible electronics and electromagnetic interference shielding.  相似文献   

7.
The excellent electronic and electrochemical properties make 2D MXenes suitable candidates for sensors, batteries, and supercapacitors. However, the metallic-like behavior of MXenes hinders their potential for optoelectronic devices such as photodetectors. In this study, the band gap of metalloid Ti3C2Tx MXene is successfully opened to 1.53 eV with phenylsulfonic acid groups and realized a transistor and high-performance near-infrared photodetector array for a flexible vision sensory-neuromorphic system. The phenylsulfonic acid groups modified Ti3C2Tx MXene (S-Ti3C2Tx)-based flexible photodetector has a maximum responsivity of 8.50×102 A W−1 and a detectivity of 3.69×1011 Jones under 1064 nm laser irradiation. Moreover, the fabricated flexible vision sensory-neuromorphic system for image recognition realizes a high recognition rate >0.99, leading to great potential in the field of biological visual simulation and biomimetic eye. Besides conventional devices with Au as the conductive electrodes, all Ti3C2Tx MXene-based devices are also fabricated with S-Ti3C2Tx as the photosensitive material and unmodified Ti3C2Tx as the conductive electrodes, exhibiting comparable optoelectronic performances.  相似文献   

8.
Transition metal carbides/nitrides (MXenes) with metallic electrical conductivity and excellent processability attract increasing attention for assembling multifunctional macrostructures. However, the challenges, involving poor mechanical strength, inferior oxidation stability, and limited scalable manufacturing, impede their wide applications. Herein, the large-area, high-strength, ultra-flexible hybrid films are developed through the multiple physical and chemical cross-linking of MXene/cellulose films facilitated by graphene oxide. The MXene-based films manifest significantly improved hydrophobicity, water/solvent resistance, and oxidation stability, and meanwhile, maintain excellent conductivity and electromagnetic interference shielding performance. The X-band surface-specific shielding effectiveness (SE) of 18,837.5 dB cm2 g−1 and an SE over 60 dB in an ultra-broadband frequency range are achieved, comparable to the best shields ever reported. Furthermore, the wearable films demonstrate excellent photothermal antibacterial and electrothermal deicing applications. Thus, such high-performance MXene-based films developed through a facile and scalable manufacturing method have substantial application prospects in flexible electronics, thermotherapy, electromagnetic compatibility, and aerospace.  相似文献   

9.
2D MXenes have emerged as promising supercapacitor electrode materials due to their metallic conductivity, pseudo-capacitive mechanism, and high density. However, layer-restacking is a bottleneck that restrains their ionic kinetics and active site exposure. Herein, a carbon dots-intercalated strategy is proposed to fabricate flexible MXene film electrodes with both large ion-accessible active surfaces and high density through gelation of calcium alginate (CA) within the MXene nanosheets followed by carbonization. The formation of CA hydrogel within the MXene nanosheets accompanied by evaporative drying endow the MXene/CA film with high density. In the carbonization process, the CA-derived carbon dots can intercalate into the MXene nanosheets, increasing the interlayer spacing and promoting the electrolytic diffusion inside the MXene film. Consequently, the carbon dots-intercalated MXene films exhibit high volumetric capacitance (1244.6 F cm−3 at 1 A g−1), superior rate capability (662.5 F cm−3 at 1000 A g−1), and excellent cycling stability (93.5% capacitance retention after 30 000 cycles) in 3 m H2SO4. Additionally, an all-solid-state symmetric supercapacitor based on the carbon dots-intercalated MXene film achieves a high volumetric energy density of 27.2 Wh L−1. This study provides a simple yet efficient strategy to construct high-volumetric performance MXene film electrodes for advanced supercapacitors.  相似文献   

10.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising alternative transparent electrode to replace conventional indium tix oxide (ITO) for flexible and stretchable electronics. For their applications in optoelectronic devices, realizing both high conductivity and transmittance for the films is of great necessity as a suitable high performance transparent electrode. Here, we demonstrate simultaneously enhanced electrical and optical properties of PEDOT:PSS films prepared on chitosan bio-substrates by using an organic surface modifier, 11-aminoundecanoic acid (11-AA). The sheet resistance of PEDOT:PSS films decreases from 1120.8 to 292.8 Ω/sq with an increase in a transmittance from 75.9 to 80.4% by 11-AA treatment on the chitosan films. The functional groups of 11-AA effectively enhance the adhesion property at the interface between the chitosan substrate and PEDOT:PSS by forming strong interfacial bondings and decrease insulating PSS from PEDOT:PSS films. The wearable heater devices and on-skin sensors based on the 11-AA-treated PEDOT:PSS on the chitosan bio-substrates are successfully fabricated, showing the excellent thermal and sensing performances. The 11-AA surface-modification approach for highly conductive PEDOT:PSS on chitosan bio-substrates presents a great potential for applications toward transparent, flexible and stretchable electronics.  相似文献   

11.
Crystalline or amorphous metal oxides are widely used in various optoelectronic devices as key components, such as transparent conductive electrodes, dielectrics or semiconducting active layers for thin-film transistor (TFT) backplanes in large-area displays, photovoltaics, and light-emitting diodes. Although crystalline inorganic materials demonstrate outstanding optoelectronic performance, owing to their wide bandgaps, large conductivities, and high carrier mobilities, their inherent brittleness makes them vulnerable to mechanical stress, thereby limiting the use of metal-oxide films in emerging flexible electronic applications. In this study, stress-diffusive organic–inorganic hybrid superlattice nanostructures are developed to overcome the mechanical limitation of crystalline oxides and to provide high mechanical stability to metal-oxide semiconductors. In particular, hybrid transparent superlattice electrodes based on crystalline indium–tin oxide exhibit high electrical conductivities of up to 555 S cm–1 (resistance variation < 3%) and effectively reduce the mechanical stress on the inorganic layer (up to 10 000 bending cycles with a radius of 1 mm). Furthermore, to ensure the viability of the hybrid superlattice flexible electronics, all solution-processed superlattice crystalline indium–gallium-oxide TFTs are implemented on a thin (≈5 µm) polyimide substrate, providing highly robust and excellent electrical performance (average mobility of 7.6 cm2 V–1 s–1).  相似文献   

12.
The need for the development of transparent conductive electrodes (TCEs) supported on flexible polymer substrates has explosively increased in response to flexible polymer‐based photovoltaic and display technologies; these TCEs replace conventional indium tin oxide (ITO) that exhibits poor performance on heat‐sensitive polymers. An efficient, flexible TCE is required to exhibit high electrical conductance and high optical transmittance, as well as excellent mechanical flexibility and long‐term stability, simultaneously. Recent advances in technologies utilizing an ultrathin noble‐metal film in a dielectric/metal/dielectric structure, or its derivatives, have attracted attention as promising alternatives that can satisfy the requirements of flexible TCEs. This review will survey the background knowledge and recent updates of synthetic strategies and design rules toward highly efficient, flexible TCEs based on ultrathin metal films, with a special focus on the principal features and available methodologies involved in the fabrication of highly transparent, conductive, ultrathin noble‐metal films. This survey will also cover the practical applications of TCEs to flexible organic solar cells and light‐emitting diodes.  相似文献   

13.
Transparent and flexible supercapacitors (TFSCs) as indispensable components for future transparent and flexible electronics have attracted significant interests. The Ag nanowires/poly(ethylene terephthalate) (PET) transparent conductive electrodes (TCEs) exhibit strong competitiveness applied in the TFSCs due to the exceptional conductivity and transparency. However, the environmental tolerance of Ag nanowires such as oxidation and sulfurization limits the reliability. Herein, electric‐double‐layer TFSCs based on Ag nanowires/PET TCEs as current collectors are reported. More importantly, a seamless, uniform, and flexible graphene layer behaves as armored and active components simultaneously for the TFSCs, by a facile electrodeposition process. On the one hand, the flexible graphene layer can isolate the Ag nanowires away from the oxidation well, particularly in the condition of electrolyte. On the other hand, the laminated graphene layer with wrinkles can store electrons, and the copercolating network of graphene layer and Ag nanowires can transport the electrons efficiently, cyclically accomplishing the operation of storage and transport, by which the synergistic effect endows the TFSCs with decent optical and electrochemical performances. The interfacial capacitance is evaluated to discuss the relationship between the structure of graphene layer and the measured capacitance. This facile process provides a rational architecture and insights into TFSCs.  相似文献   

14.
MXenes are an emerging class of 2D transition metal carbides and nitrides. They have been widely used in flexible electronics owing to their excellent conductivity, mechanical flexibility, and water dispersibility. In this study, the electrode and active layer applications of MXene materials in electronic skins are realized. By utilizing vacuum filtration technology, few-layer MXene electrodes are integrated onto the top and bottom surfaces of the 3D polyacrylonitrile (PAN) network to form a stable electronic skin. The fabricated flexible device with Ti3C2Tx MXene electrodes outperforms those with other electrodes and exhibits excellent device performance, with a high sensitivity of 104.0 kPa−1, fast response/recovery time of 30/20 ms, and a low detection limit of 1.5 Pa. Furthermore, the electrode and the constructed MXene/PAN-based flexible pressure sensor exhibit robust mechanical stability and can survive 240 bending cycles. Such a robust, flexible device can be enlarged or folded like a jigsaw puzzle or origami and transformed from 2D to 3D structures; moreover, it can detect tiny movements of human muscles, such as movements corresponding to sound production and intense movements during bending of fingers.  相似文献   

15.
Textile‐based electronics enable the next generation of wearable devices, which have the potential to transform the architecture of consumer electronics. Highly conductive yarns that can be manufactured using industrial‐scale processing and be washed like everyday yarns are needed to fulfill the promise and rapid growth of the smart textile industry. By coating cellulose yarns with Ti3C2Tx MXene, highly conductive and electroactive yarns are produced, which can be knitted into textiles using an industrial knitting machine. It is shown that yarns with MXene loading of ≈77 wt% (≈2.2 mg cm?1) have conductivity of up to 440 S cm?1. After washing for 45 cycles at temperatures ranging from 30 to 80 °C, MXene‐coated cotton yarns exhibit a minimal increase in resistance while maintaining constant MXene loading. The MXene‐coated cotton yarn electrode offers a specific capacitance of 759.5 mF cm?1 at 2 mV s?1. A fully knitted textile‐based capacitive pressure sensor is also prepared, which offers high sensitivity (gauge factor of ≈6.02), wide sensing range of up to ≈20% compression, and excellent cycling stability (2000 cycles at ≈14% compression strain). This work provides new and practical insights toward the development of platform technology that can integrate MXene in cellulose‐based yarns for textile‐based devices.  相似文献   

16.
2D MXene materials are of considerable interest for future energy storage. A MXene film could be used as an effective flexible supercapacitor electrode due to its flexibility and, more importantly, its high specific capacitance. However, although it has excellent electronic conductivity, sluggish ionic kinetics within the MXene film becomes a fundamental limitation to the electrochemical performance. To compensate for the relative deficiency, MXene films are frequently reduced to several micrometer dimensions with low mass loading (<1 mg cm?2), to the point of detriment of areal performance and commercial value. Herein, for the first time, the design of a 3D porous MXene/bacterial cellulose (BC) self‐supporting film is reported for ultrahigh capacitance performance (416 F g?1, 2084 mF cm?2) with outstanding mechanical properties and high flexibility, even when the MXene loading reaches 5 mg cm?2. The highly interconnected MXene/BC network enables both excellent electron and ion transport channel. Additionally, a maximum energy density of 252 µWh cm?2 is achieved in an asymmetric supercapacitor, higher than that of all ever‐reported MXene‐based supercapacitors. This work exploits a simple route for assembling 2D MXene materials into 3D porous films as state‐of‐the‐art electrodes for high performance energy storage devices.  相似文献   

17.
The freestanding MXene films are promising for compact energy storage ascribing to their high pseudocapacitance and density, yet the sluggish ion transport caused by the most densely packed structure severely hinders their rate capability. Here, a reassembly strategy for constructing freestanding and flexible MXene-based film electrodes with a tunable porous structure is proposed, where the Ti3C2Tx microgels disassembled from 3D structured hydrogel are reassembled together with individual Ti3C2Tx nanosheets in different mass ratios to form a densely packed 3D network in microscale and a film morphology in macroscale. The space utilization of produced film can be maximized by a good balance of the density and porosity, resulting in a high volumetric capacitance of 736 F cm−3 at an ultrahigh scan rate of 2000 mV s−1. The fabricated supercapacitor yields a superior energy density of 40 Wh L−1 at a power density of 0.83 kW L−1, and an energy density of 21 Wh L−1 can be still maintained even when the power density reaches 41.5 kW L−1, which are the highest values reported to date for symmetric supercapacitors in aqueous electrolytes. More promisingly, the reassembled films can be used as electrodes of flexible supercapacitors, showing excellent flexibility and integrability.  相似文献   

18.
In this paper we solve a long term material problem of thin film organic electronics, namely the solution processing of an opaque electrode. Solution processing of opaque metallic top electrodes typically leads to severe shunting problems. We solve this issue by reversing the electrode sequence and print a highly conductive but opaque bottom electrode from metallic precursors. Devices based on these printed bottom electrodes are compared to reference stacks based on evaporated silver. The transparent top electrode is solution processed from silver nanowire inks, which results in highly transparent electrodes with excellent conductivity. The optical, mainly reflective properties of the opaque silver electrode are investigated in comparison to screen-printed silver pastes. The outstanding smoothness of the printed Ag electrode results in high reflectivity and poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) based solar cells with η > 2.5% and high fill factors performing on par with reference devices on evaporated silver electrode layers.  相似文献   

19.
Low-temperature preparation of transparent conducting electrodes is essential for flexible optoelectronic devices. Tin-doped In2O3 films with high transparency and low electrical resistance were prepared at room temperature using a radiofrequency ion beam sputtering system. Specimens with a low sheet resistivity of 10−4 Ω cm and a high visible-light transmittance of 85% to 90% were obtained. Hall measurements were used to determine mobility and carrier concentration, and the effects on resistivity are discussed.  相似文献   

20.
Highly conductive polymer nanocomposites are greatly desired for electromagnetic interference (EMI) shielding applications. Although transition metal carbide/carbonitride (MXene) has shown its huge potential for producing highly conductive films and bulk materials, it still remains a great challenge to fabricate extremely conductive polymer nanocomposites with outstanding EMI shielding performance at minimal amounts of MXenes. Herein, an electrostatic assembly approach for fabricating highly conductive MXene@polystyrene nanocomposites by electrostatic assembling of negative MXene nanosheets on positive polystyrene microspheres is demonstrated, followed by compression molding. Thanks to the high conductivity of MXenes and their highly efficient conducting network within polystyrene matrix, the resultant nanocomposites exhibit not only a low percolation threshold of 0.26 vol% but also a superb conductivity of 1081 S m?1 and an outstanding EMI shielding performance of >54 dB over the whole X‐band with a maximum of 62 dB at the low MXene loading of 1.90 vol%, which are among the best performances for electrically conductive polymer nanocomposites by far. Moreover, the same nanocomposite has a highly enhanced storage modulus, 54% and 56% higher than those of neat polystyrene and conventional MXene@polystyrene nanocomposite, respectively. This work provides a novel methodology to produce highly conductive polymer nanocomposites for highly efficient EMI shielding applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号