首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In nature, hierarchically assembled nanoscale ionic conductors, such as ion channels and ion pumps, become the structural and functional basis of bioelectric phenomena. Recently, ion‐channel‐mimetic nanofluidic systems have been built into reconstructed 2D nanomaterials for energy conversion and storage as effective as the electrogenic cells. Here, a 2D‐material‐based nanofluidic reverse electrodialysis system, containing cascading lamellar nanochannels in oppositely charged graphene oxide membrane (GOM) pairs, is reported for efficient osmotic energy conversion. Through preassembly modification, the surface charge polarity of the 2D nanochannels can be efficiently tuned from negative (?123 mC m?2) to positive (+147 mC m?2), yielding strongly cation‐ or anion‐selective GOMs. The complementary two‐way ion diffusion leads to an efficient charge separation process, creating superposed electrochemical potential difference and ionic flux. An output power density of 0.77 W m?2 is achieved by controlled mixing concentrated (0.5 m ) and diluted ionic solutions (0.01 m ), which is about 54% higher than using commercial ion exchange membranes. Tandem alternating GOM pairs produce high voltage up to 2.7 V to power electronic devices. Besides simple salt solutions, various complex electrolyte solutions can be used as energy sources. These findings provide insights to construct cascading nanofluidic circuits for energy, environmental, and healthcare applications.  相似文献   

2.
Nanofluidic membranes consisting of 2D materials and polymers are considered promising candidates for harvesting osmotic energy from river estuaries owing to their unique ion channels. However, micron-scale polymer chains agglomerate in the nanochannels, resulting in steric hindrance and affection ion transport. Herein, a nanofluidic membrane is designed from MXene and xylan nanoparticles that are derived from paper-mill waste. The demonstrated membrane reinforced by paper-mill waste has the characteristics of green, low-cost, and outstanding performance in mechanical properties and surface-charge-governed ionic transport. The MXene/carboxmethyl xylan (CMX) membrane demonstrates a high surface charge (ζ-potential of −44.3 mV) and 12 times higher strength (284.96 MPa) than the pristine MXene membrane. The resulting membrane shows intriguing features of high surface charge, high ion selectivity, and reduced steric hindrance, enabling it high osmotic energy generation performance. A potential of the nanofluidic membrane is ≈109 mV, the corresponding current of up to 2.73 µA, and the output power density of 14.52 mW m−2 are obtained under a 1000-fold salt concentration gradient. As the electrolyte pH increases, the power density reaches 56.54 mW m−2. This works demonstrate that CMX nanoparticles can effectively enhance the properties of the nanofluidic membrane and provide a promising strategy to design high-performance nanofluidic devices.  相似文献   

3.
2D‐material‐based membranes with densely packed sub‐nanometer‐height fluidic channels show exceptional transport properties, and have attracted broad research interest for energy‐, environment‐, and healthcare‐related applications. Recently, light‐controlled active transport of ionic species in abiotic materials have received renewed attention. However, its dependence on inhomogeneous or site‐specific illumination is a challenge for scalable application. Here, directional proton transport through printed asymmetric graphene oxide superstructures (GOSs) is demonstrated under full‐area illumination. The GOSs are composed of partially stacked graphene oxide multilayers formed by a two‐step direct ink writing process. The direction of the photoinduced proton current is determined by the position of top graphene oxide multilayers, which functions as a photogate to modulate the horizontal ion transport through the beneath lamellar nanochannels. This transport phenomenon unveils a new driving mechanism that, in asymmetric nanofluidic structures, the decay of local light intensity in depth direction breaks the balance of electric potential distribution in horizontal direction, and thus generates a photoelectric driving force for ion transport. Following this mechanism, the GOSs are developed into photonic ion transistors with three different gating modes. The asymmetrically printed photonic‐ionic devices provide fundamental elements for light‐harvesting nanofluidic circuits, and may find applications for artificial photosynthesis and artificial electric organs.  相似文献   

4.
Nanopores in ultrathin or atomically thin membranes attract broad interest because the infinitesimal pore depth allows selective transport of ions and molecules with ultimate permeability. Toward large‐scale osmotic energy conversion, great challenges remain in extrapolating the promising single‐pore demonstration to really powerful macroscopic applications. Herein, the origin of the selective ion transport in ultrathin nanopores is systematically investigated. Based on a precise Poisson and Nernst–Planck model calculation, it is found that the generation of net diffusion current and membrane potential stems from the charge separation within the electric double layer on the outer membrane surface, rather than that on the inner pore wall. To keep the charge selectivity of the entire membrane, a critical surface charged area surrounding each pore orifice is therefore highly demanded. Otherwise, at high pore density, the membrane selectivity and the overall power density would fall down instead, which explains the giant gap between the actual experimental achievements and the single‐pore estimation. To maximize the power generation, smaller nanopores (pore diameter ≈1–2 nm) are appropriate for large‐scale osmotic energy conversion. With a porosity of ≈10%, the total power density approaches more than 200 W m‐2, anticipating a substantial advance toward high‐performance large‐scale nanofluidic power sources.  相似文献   

5.
Biomimetic smart nanochannels can regulate ion transport behavior responsive to the external stimuli, having huge potential in nanofluidic devices, sensors and energy conversion. Field-effect nanofluidic diodes or transistors based on electric-responsive nanochannels are emerging owing to their advantages such as non-invasiveness, in situ, real time, and high efficiency. However, simultaneously realizing the voltage-control of the ion conductance and ion current rectification (ICR) properties is still a big challenge. Here, a field-effect iontronic device is developed based on ionomer/anodic aluminum oxide/conducting polymer sandwich-structured nanochannel to realize the multi-control of ion transport behaviors including ion conductance, ICR magnitude, and ICR direction by modulating the surface charge, wettability, and morphology of the nanochannel. The electroactive conducting polymer carries tunable surface charges responsive to the electric stimuli, leading to the regulation of ICR values. The complex three-segment structures lead to the reverse of ICR direction by reconfiguring the charge distribution along with the whole channel. The switching wettability between hydrophilic and hydrophobic results in the regulation of ion conductance. Furthermore, the field-effect iontronic device functions in a wide salinity range especially in hypersaline environment, due to the salinity-adaptive properties of the membrane. A new route is provided for designing more functional field-effect nanofluidic devices.  相似文献   

6.
Membrane-based osmotic power harvesting is a strategy for sustainable power generation. 2D nanofluids with high ion conductivity and selectivity are emerging candidates for osmotic energy conversion. However, the ion diffusion under nanoconfinement is hindered by homogeneous 2D membranes with monotonic charge regulation and severe concentration polarization, which results in an undesirable power conversion performance. Here, an asymmetric nanochannel membrane with a two-layered structure is reported, in which the angstrom-scale channels of 2D transition metal carbides/nitrides (MXenes) act as a screening layer for controlling ion transport, and the nanoscale pores of the block copolymer (BCP) are the pH-responsive arrays with an ordered nanovoid structure. The heterogeneous nanofluidic device exhibits an asymmetric charge distribution and enlarged 1D BCP porosity under acidic and alkaline conditions, respectively; this improves the gradient-driven ion diffusion, allowing a high-performance osmotic energy conversion with a power density of up to 6.74 W m−2 by mixing artificial river water and seawater. Experiments and theoretical simulations indicate that the tunable asymmetric heterostructure contributes to impairing the concentration polarization and enhancing the ion flux. This efficient osmotic energy generator can advance the fundamental understanding of the MXene-based heterogeneous nanofluidic devices as a paradigm for membrane-based energy conversion technologies.  相似文献   

7.
Facing the energy crisis, using the salinity gradient between seawater and freshwater for osmotic energy conversion is a direct way to obtain energy. So far, most nanofluidic membranes utilized for osmotic energy generation are cation-selective. Given that both anion- and cation-selective membranes have the identical importance for energy conversion devices, it is of great significance to develop anion-selective membranes. Herein, an anion-selective membrane is synthesized by in situ growth of imine-bridged covalent organic framework (COF) on ordered anodic aluminum oxide (AAO) at room temperature. The imine groups and residual amino groups of COF can combine with protons in neutral solution, enabling the COF positively charged and efficiently transport of anions. Particularly, due to the asymmetry in the charge and structure of COF/AAO, the as-prepared membrane exhibits excellent ionic current rectification property, which can inhibit ion concentration polarization effectively and possess high ion selectivity and permeability. Using the present COF/AAO membrane, salinity gradient energy can be successfully harvested from solutions with high salt content, and the output power density reached 17.95W m−2 under a 500-fold salinity gradient. The study provides a new avenue for construction and application of anion-selective membranes in the smart ion transport and efficient energy conversion.  相似文献   

8.
Developing ion-selective membranes with anti-biofouling property and biocompatibility is highly crucial in harvesting osmotic energy in natural environments and for future biomimetic applications. However, the exploration of membranes with these properties in osmotic energy conversion remain largely unaddressed. Herein, a tough zwitterionic gradient double-network hydrogel membrane (ZGDHM) with excellent biofouling resistance and cytocompatibility for sustainable osmotic energy harvesting is demonstrated. The ZGDHM, composed of negatively charged 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as the first scaffold network and zwitterionic sulfobetaine acrylamide (SBAA) as the second network, is prepared by a two-step photopolymerization, thus creating continuous gradient double-network nanoarchitecture and then remarkably enhanced mechanical properties. As verified by the experiments and simulations, the gradient nanoarchitecture endows the hydrogel membrane with apparent ionic diode effect and space-charge-governed transport property, thus facilitating directional ion transport. Consequently, the ZGDHM can achieve a power density of 5.44 W m−2 by mixing artificial seawater and river water, surpassing the commercial benchmark. Most importantly, the output power can be promoted to an unprecedented value of 49.6 W m−2 at the mixing of salt-lake water and river water, nearly doubling up most of the existing nanofluidic membranes. This study paves a new avenue toward developing ultrahigh-performance osmotic energy harvesters for biomimetic applications.  相似文献   

9.
10.
Heterogeneous structures in nacre‐mimetic 2D layered materials generate novel transport phenomena in angstrom range, and thus provide new possibilities for innovative applications for sustainable energy, a clean environment, and human healthcare. In the two orthogonal transport directions, either vertical or horizontal, heterostructures in horizontal direction have never been reported before. Here, a 2D‐material‐based laterally heterogeneous membrane is fabricated via an unconventional dual‐flow filtration method. Negatively and positively charged graphene oxide multilayers are laterally patterned and interconnected in a planar configuration. Upon visible light illumination on the bipolar nanofluidic heterojunction, protons are able to move uphill against their concentration gradient, functioning as a light‐harvesting proton pump. A maximum proton concentration gradient of about 5.4 pH units mm?2 membrane area can be established at a transport rate up to 14.8 mol h?1 m?2. The transport mechanism can be understood as a light‐triggered asymmetric polarization in surface potential and the consequent change in proton capacity in separate parts. The implementation of photonic–ionic conversion with abiotic materials provides a full‐solid‐state solution for bionic vision and artificial photosynthesis. There is plenty of room to expect the laterally heterogeneous membranes for new functions and better performance in the abundant family of liquid processable colloidal 2D materials.  相似文献   

11.
Ion-selective membrane embedded in a reverse electrodialysis system can achieve the conversion of osmotic energy into electricity. However, the ingenious design and development of pure polymer membranes that simultaneously satisfy excellent mechanical strength, long-term stability, high power density, and increased testing area is a crucial challenge. Here, high-strength, thin PBO nanofiber membranes (PBONM) with 3D nanofluidic channels and a thickness of 0.81 µm are prepared via a simple vacuum-assisted filtration technology. The thin PBONM exhibits excellent mechanical properties: stress of 235.8 MPa and modulus of 16.96 GPa, outperforming the state-of-the-art nanofluidic membranes. The obtained PBONM reveals surface-charge-governed ion transport behavior and high ion selectivity of 0.88 at a 50-fold concentration gradient. The PBO membrane-based generator delivers a power density of 7.7 and 40.2 W m−2 at 50-fold and 500-fold concentration gradient. Importantly, this PBONM presents excellent stability in response to different external environments including various saline solutions, pH, and temperature. In addition, the maximum power density of PBONM reaches up to 5.9 W m−2 under an increased testing area of 0.79 mm2, exceeding other membrane-based generators with comparable testing areas. This work paves the way for constructing high-strength fiber nanofluidic membranes for highly efficient osmotic energy conversion.  相似文献   

12.
The development of advanced electrode materials for the next generation of electrochemical energy storage (EES) solutions has attracted profound research attention as a key enabling technology toward decarbonization and electrification of transportation. Since the discovery of graphene's remarkable properties, 2D nanomaterials, derivatives, and heterostructures thereof, have emerged as some of the most promising electrode components in batteries and supercapacitors owing to their unique and tunable physical, chemical, and electronic properties, commonly not observed in their 3D counterparts. This review particularly focuses on recent advances in EES technologies related to 2D crystals originating from non-layered 3D solids (non-van der Waals; nvdW) and their hallmark features pertaining to this field of application. Emphasis is given to the methods and challenges in top-down and bottom-up strategies toward nvdW 2D sheets and their influence on the materials’ features, such as charge transport properties, functionalization, or adsorption dynamics. The exciting advances in nvdW 2D-based electrode materials of different compositions and mechanisms of operation in EES are discussed. Finally, the opportunities and challenges of nvdW 2D systems are highlighted not only in electrochemical energy storage but also in other applications, including spintronics, magnetism, and catalysis.  相似文献   

13.
Biological pores regulate the cellular traffic of a diverse collection of molecules, often with extremely high selectivity. Given the ubiquity of charge-based separation in nature, understanding the link between the charged functionalities and the ion transport activities is essential for designing delicate separations, with the correlation being comparatively underdeveloped. Herein, the effect of charge density from the impact of pore structure is decoupled using a multivariate strategy for the construction of covalent organic framework-based membranes. How the density of charged sites in the nanofluidic membranes affect the ion transport activity with particular emphasis on Li+ and Mg2+ ions, relevant to the challenge of salt-lake lithium mining is systematically investigated. Systematic control of the charge distribution produces membranes with numerous advantages, overcoming the long-term challenge of Li+/Mg2+ separation. The top membrane exhibits an outstanding equilibrium selectivity for Li+ over Mg2+ and operational stability under diffusion dialysis and electrodialysis conditions (Li+/Mg2+ up to 500), qualifying it as a potential candidate for lithium extraction. It is anticipated that the developed nanofluidic membrane platform can be further leveraged to tackle other challenges in controlled separation processes.  相似文献   

14.
Interlayer transport of charges and carriers of 2D nanomaterials is a critical parameter that governs the material and device performance in energy storage applications. Inspired by multilevel natural bamboo-membrane with ultrafast water and electrolyte transport properties to support its super-rapid growth rate, 2D–2D multilevel heterostructured graphene-based membranes with tailored gradient interlayer channels are rationally designed for achieving ultrafast interlayer ion transport. The bioinspired heterostructured membranes possess multilevel interlayer spacing distributions, where the closely packed layers with sub-nanosized interlayer space provide ultrafast confined interlayer ion transport, while the loosely stacked outer layers consisting of open channels with large distances up to few micrometres are favorable for rapid wetting and penetration of liquid electrolytes. The combination of advantages of large-size open channels and nanosized confined channels offers ultrafast electrolyte wetting and permeation and interlayer ion transport and provide the devices with superior volumetric capacity as free-standing electrodes for rechargeable batteries.  相似文献   

15.
The emerging electrochemical energy storage systems beyond Li‐ion batteries, including Na/K/Mg/Ca/Zn/Al‐ion batteries, attract extensive interest as the development of Li‐ion batteries is seriously hindered by the scarce lithium resources. During the past years, large amounts of studies have focused on the investigation of various electrode materials toward emerging metal‐ion batteries to realize high energy density, high power density, and a long cycle life. In particular, vanadium‐based nanomaterials have received great attention. Vanadium‐based compounds have a big family with different structures, chemical compositions, and electrochemical properties, which provide huge possibilities for the development of emerging electrochemical energy storage. In this review, a comprehensive overview of the recent progresses of promising vanadium‐based nanomaterials for emerging metal‐ion batteries is presented. The vanadium‐based materials are classified into four groups: vanadium oxides, vanadates, vanadium phosphates, and oxygen‐free vanadium‐based compounds. The structures, electrochemical properties, and modification strategies are discussed. The structure–performance relationships and charge storage mechanisms are focused on. Finally, the perspectives about future directions of vanadium‐based nanomaterials for emerging energy storage devices are proposed. This review will provide comprehensive knowledge of vanadium‐based nanomaterials and shed light on their potential applications in emerging energy storage.  相似文献   

16.
Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices.  相似文献   

17.
Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted.  相似文献   

18.
The emergence of lamellar nanofluidic membranes offers feasible routes for developing highly efficient, mechanically robust, and large-scale devices for osmotic energy harvesting. However, inferior ion permeability associated with their relatively long channels limits ionic flux and restricts their output performance. Herein, a superstructured graphene oxide membrane is developed to allow programmable topological variation in local geometry and contain laminar spaces inside. Such deliberate design offers excess specific area as well as nanofluidic channels to modulate transmembrane ionic transportation while concomitantly retaining similar nanoconfined environment in contrast to planar ones, leading to considerable enhancement of ionic permeability without compromising selectivity. This can be highly favorable in terms of osmotic energy harvesting, where the superstructured membranes offer a power output much higher than those of conventional planar ones. Besides, the superstructure design also endows the resulting membranes with benign biofouling resistance, which can be crucial to their long-term usage in converting osmotic energy. This study highlights the importance of membrane topographies and presents a general design concept that could be extended to other nanoporous membranes to develop high-performance nanofluidic devices.  相似文献   

19.
Selective water and ion transport are essential in fields related to the environment, resources, energy, and more. Membranes, especially those constituted by 2D materials, are promising to control mass transport within nano‐ and sub‐nanoscales. When stacked together, the ultrathin nanosheets of these materials can build up laminar membranes with an ordered layer‐like structure. Numerous channels are thereby created among layers for fast and selective mass transport, which arouses huge research and application interests. This Review aims to present the latest theoretical and experimental advances of 2D laminar membranes for selective water and ion transport, covering three fundamental aspects. Starting with a concise introduction to the materials and assembly for laminar membranes, it then mainly focuses on systematically discussing the transport‐controlling effects caused by intrinsic membrane structure and extrinsic influences. The relation between these effects and current membrane selective performance as well as future membrane designs is then elucidated. The most urgent challenges and corresponding opportunities that emerge around 2D laminar membranes are highlighted thereafter.  相似文献   

20.
Substantial progress has been made in blue perovskite light-emitting diodes (PeLEDs). In this review, the strategies for high-performance blue PeLEDs are described, and the main focus is on the optimization of the optical and electrical properties of perovskites. In detail, the fundamental device working principles are first elucidated, followed by a systematical discussion of the key issues for achieving high-quality perovskite nanocrystals (NCs) and quasi-2D perovskites. These involve ligand optimization and metal doping in enhancing the carrier transport and reducing the traps of perovskite NCs, as well as the perovskite phase modulation and defect passivation in improving energy transfer and emission efficiency of quasi-2D perovskites. The strategies for efficient 3D mixed-halide perovskite and lead-free perovskite blue LEDs are then briefly introduced. After that, other strategies, including effective charge transport layer, efficient perovskite emission system, and effective device architecture for high light outcoupling efficiency, are further discussed to boost the blue PeLED performances. Meanwhile, the testing standard of blue PeLED lifetime is suggested to enable the direct comparisons of the device operational stability. Finally, challenges and future directions for blue PeLEDs are addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号