首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric materials capable of spontaneously healing physical damages and restoring various functions have been attracting growing interest. Among these, the category of water-insensitive self-healing materials emerges as a promising research focus due to their reliable self-healing and stable mechanical properties in high-humidity environments and even underwater. In this review, an update on the significant advancements in the design of water-insensitive self-healing polymers is presented, which are based on various unique chains. Their advantages and limitations are discussed. Additionally, a series of typical dynamic interactions that are used to enable autonomous self-healing in underwater environments is highlighted. Moving beyond these fundamental designs, the diverse opportunities to leverage recent synthetic advancements in water-insensitive self-healing materials for the progression of soft electronic applications are systematically discussed. Ultimately, the significant challenges and remaining opportunities to present a comprehensive view of the future development of water-insensitive self-healing materials are highlighted. This review aims to stimulate further innovation in this burgeoning and emerging field of intrinsic healable materials, interfacing with dynamic chemistry and soft electronics.  相似文献   

2.
High conductivity, large mechanical strength, and elongation are important parameters for soft electronic applications. However, it is difficult to find a material with balanced electronic and mechanical performance. Here, a simple method is developed to introduce ion‐rich pores into strong hydrogel matrix and fabricate a novel ionic conductive hydrogel with a high level of electronic and mechanical properties. The proposed ionic conductive hydrogel is achieved by physically cross‐linking the tough biocompatible polyvinyl alcohol (PVA) gel as the matrix and embedding hydroxypropyl cellulose (HPC) biopolymer fibers inside matrix followed by salt solution soaking. The wrinkle and dense structure induced by salting in PVA matrix provides large stress (1.3 MPa) and strain (975%). The well‐distributed porous structure as well as ion migration–facilitated ion‐rich environment generated by embedded HPC fibers dramatically enhances ionic conductivity (up to 3.4 S m?1, at f = 1 MHz). The conductive hybrid hydrogel can work as an artificial nerve in a 3D printed robotic hand, allowing passing of stable and tunable electrical signals and full recovery under robotic hand finger movements. This natural rubber‐like ionic conductive hydrogel has a promising application in artificial flexible electronics.  相似文献   

3.
A sustainable power source is a key technical challenge for practical applications of electrically responsive soft robots, especially the required voltage is over several thousand volts. Here, a practicable new technology, triboelectric soft robot (TESR) system with the primary characteristics of power source from mechanical energy, is developed. At its heart is TESR with bioinspired architectures made of soft-deformable body and two triboelectric adhesion feet, which is driven and accurately controlled through triboelectric effect, while reaching maximum crawling speeds of 14.9 mm s−1 on the acrylic surface. The characteristics of the TESR, including displacement and force, are tested and simulated under the power of a rotary freestanding triboelectric nanogenerator (RF-TENG). Crawling of TESR is successfully realized on different materials surfaces and different angle slopes under the driven of RF-TENG. Furthermore, a real-time visual monitoring platform, in which TESR carries a micro camera to transmit images in a long narrow tunnel, is also achieved successfully, indicating that it can be used for fast diagnosis in an area inaccessible to human beings in the future. This study offers a new insight into the sustainable power source technologies suitable for electrically responsive soft robots and contributes to expanding the applicability of TENGs.  相似文献   

4.
The diverse vision systems found in nature can provide interesting design inspiration for imaging devices, ranging from optical subcomponents to digital cameras and visual prostheses, with more desirable optical characteristics compared to conventional imagers. The advantages of natural vision systems include high visual acuity, wide field of view, wavelength‐free imaging, improved aberration correction and depth of field, and high motion sensitivity. Recent advances in soft materials, ultrathin electronics, and deformable optoelectronics have facilitated the realization of novel processes and device designs that mimic biological vision systems. This review highlights recent progress and continued efforts in the research and development of bioinspired artificial eyes. At first, the configuration of two representative eyes found in nature: a single‐chambered eye and a compound eye, is explained. Then, advances in bioinspired optic components and image sensors are discussed in terms of materials, optical/mechanical designs, and integration schemes. Subsequently, novel visual prostheses as representative application examples of bioinspired artificial eyes are described.  相似文献   

5.
This work describes a microcontact printing (µCP) process for reproducible manufacturing of liquid gallium alloy–based soft and stretchable electronics. One of the leading approaches to create soft and stretchable electronics involves embedding liquid metals (LM) into an elastomer matrix. Although the advantages of liquid metal–based electronics have been well established, their mainstream adoption and commercialization necessitates development of precise and scalable manufacturing methods. To address this need, a scalable µCP process is presented that uses surface‐functionalized, reusable rigid, or deformable stamps to transfer eutectic gallium–indium (EGaIn) patterns onto elastomer substrates. A novel approach is developed to create the surface‐functionalized stamps, enabling selective transfer of LM to desired locations on a substrate without residues or electrical shorts. To address the critical needs of precise and reproducible positioning, alignment, and stamping force application, a high‐precision automated µCP system is designed. After describing the approach, the precision of stamps is evaluated and EGaIn features (as small as 15 µm line width), as well as electrical functionality of printed circuits with and without deformation, are fabricated. The presented process addresses many of the limitations associated with the alternative fabrication processes, and thus provides an effective approach for scalable fabrication of LM‐based soft and stretchable microelectronics.  相似文献   

6.
Magnetic soft robots capable of wirelessly controlled programmable deformation and locomotion are desirable for diverse applications. Such multi-variable actuation ideally requires a polymer matrix with a well-defined range of softness and stretchability (Young's modulus of 0.1–10 MPa, high stretchability >200%). However, this defined mechanical range excludes most polymer candidates, leaving only a limited number of available polymers (e.g., PDMS, Ecoflex) with covalently cross-linked networks that may lead to non-recyclable robots and further potential threats to environment. Herein, based on the synergistic effects of reduced cross-linking density and intermolecular hydrogen bonding, a dynamic covalent polyimine is newly designed as polymer matrix and magnetic microparticles as fillers, and integrate defined softness and stretchability, full chemical recyclability, rapid room-temperature healability and multimodal actuation into a single magnetic soft robot. The polyimine is soft and stretchable enough to process soft robots in various geometries by simple laser cutting, without the need to pre-design the geometry to suit target scenarios. Through a cyclic depolymerization/repolymerization, this full recycling restores 100% of the robots’ mechanical properties and rapid deformability/mobility to their original level within seconds and heals quickly within minutes when damaged, facilitating ideal cyclic material economy for soft robots in diverse scenarios.  相似文献   

7.
8.
Movement and morphing in biological systems provide insights into the materials and mechanisms that may enable the development of advanced engineering structures. The nastic motion of plants in response to environmental stimuli, e.g., the rapid closure of the Venus flytrap's leaves, utilizes snap‐through instabilities originating from anisotropic deformation of plant tissues. In contrast, ballistic tongue projection of chameleon is attributed to direct mechanical energy transformation by stretching elastic tissues in advance of rapid projection to achieve higher speed and power output. Here, a bioinspired trilayered bistable all‐polymer laminate containing dielectric elastomers (DEs) is reported, which double as both structural and active materials. It is demonstrated that the prestress and laminating strategy induces tunable bistability, while the electromechanical response of the DE film enables reversible shape transition and morphing. Electrical actuation of bistable structures obviates the need for continuous application of electric field to sustain their transformed state. The experimental results are qualitatively consistent with our theoretical analyses of prestrain‐dependent shape and bistability.  相似文献   

9.
Standard fabrication of soft electronic devices with both high controllability and yield is highly desirable but remains a challenge due to the modulus mismatch of component materials through a one-step process. Here, by mimicking the freeze-section process of multicomponent biological tissues containing low-modulus muscles and high-modulus bones, for the first time, a hydrogel cryo-microtomy method to continuously making soft electronic devices based on a sol-solid-gel transition mechanism is presented. Polyvinyl alcohol (PVA) electrolyte and aligned nitrogen-doped multi-walled carbon nanotube (N-MWCNT) array electrode are demonstrated as low- and high-modulus components to fabricate soft supercapacitors with high performances. Stable interfaces form between frozen PVA electrolyte and N-MWCNT electrodes with matched moduli at subzero temperature and are well maintained during cryo-microtomy process. The resulting soft supercapacitors realize controllable patterns, tunable thicknesses from 0.5 to 600 μm, high yields such as 20 devices per minute even at lab scale, and high reproducibility with over 75% devices in 15% performance fluctuation. This cryo-microtomy method is further generalized to fabricate other soft devices such as sensors with high sensing properties.  相似文献   

10.
Soft and stretchable electronics have diverse applications in the fields of compliant bioelectronics, textile-integrated wearables, novel forms of mechanical sensors, electronics skins, and soft robotics. In recent years, multiple material architectures have been proposed for highly deformable circuits that can undergo large tensile strains without losing electronic functionality. Among them, gallium-based liquid metals benefit from fluidic deformability, high electrical conductivity, and self-healing property. However, their deposition and patterning is challenging. Biphasic material architectures are recently proposed as a method to address this problem, by combining advantages of solid-phase materials and composites, with liquid deformability and self-healing of liquid phase conductors, thus moving toward scalable fabrication of reliable stretchable circuits. This article reviews recent biphasic conductor architectures that combine gallium-based liquid-phase conductors, with solid-phase particles and polymers, and their application in fabrication of soft electronic systems. In particular, various material combinations for the solid and liquid phases in the biphasic conductor, as well as methods used to print and pattern biphasic conductive compounds, are discussed. Finally, some applications that benefit from biphasic architectures are reviewed.  相似文献   

11.
Recent progress in stretchable forms of inorganic electronic systems has established a route to new classes of devices, with particularly unique capabilities in functional biointerfaces, because of their mechanical and geometrical compatibility with human tissues and organs. A reliable approach to physically and chemically protect the electronic components and interconnects is indispensable for practical applications. Although recent reports describe various options in soft, solid encapsulation, the development of approaches that do not significantly reduce the stretchability remains an area of continued focus. Herein, a generic, soft encapsulation strategy is reported, which is applicable to a wide range of stretchable interconnect designs, including those based on two‐dimensional (2D) serpentine configurations, 2D fractal‐inspired patterns, and 3D helical configurations. This strategy forms the encapsulation while the system is in a prestrained state, in contrast to the traditional approach that involves the strain‐free configuration. A systematic comparison reveals that substantial enhancements (e.g., ≈6.0 times for 2D serpentine, ≈4.0 times for 2D fractal, and ≈2.6 times for 3D helical) in the stretchability can be achieved through use of the proposed strategy. Demonstrated applications in highly stretchable light‐emitting diodes systems that can be mounted onto complex curvilinear surfaces illustrate the general capabilities in functional device systems.  相似文献   

12.
Fully simulating the components and microstructures of soft tissue is a challenge for its functional regeneration. A new aligned hydrogel microfiber scaffold for spinal cord regeneration is constructed with photocrosslinked gelatin methacryloyl (GelMA) and electrospinning technology. The directional porous hydrogel fibrous scaffold consistent with nerve axons is vital to guide cell migration and axon extension. The GelMA hydrogel electrospun fibers soak up water more than six times their weight, with a lower Young's modulus, providing a favorable survival and metabolic environment for neuronal cells. GelMA fibers further demonstrate higher antinestin, anti‐Tuj‐1, antisynaptophysin, and anti‐CD31 gene expression in neural stem cells, neuronal cells, synapses, and vascular endothelial cells, respectively. In contrast, anti‐GFAP and anti‐CS56 labeled astrocytes and glial scars of GelMA fibers are shown to be present in a lesser extent compared with gelatin fibers. The soft bionic scaffold constructed with electrospun GelMA hydrogel fibers not only facilitates the migration of neural stem cells and induces their differentiation into neuronal cells, but also inhibits the glial scar formation and promotes angiogenesis. Moreover, the scaffold with a high degree of elasticity can resist deformation without the protection of a bony spinal canal. The bioinspired aligned hydrogel microfiber proves to be efficient and versatile in triggering functional regeneration of the spinal cord.  相似文献   

13.
Soft pneumatic actuators possess the increasing potential for various healthcare applications, such as smart wearable devices, safe human-robot interaction, and flexible manipulators. However, it is difficult to translate the existing technologies to commercial applications due to their inefficient volumetric power, sophisticated control with high operation pressure, slow production, and high cost. To overcome these issues, herein, a caterpillar-inspired actuator using hierarchical textile architectures based on simple fabrication and low-cost strategy is designed. Unlike the existing textile-based pneumatic actuators, the designed actuators are constructed by combining boucle fancy yarns with a novel trilayer-knit architecture. The as-prepared actuators concurrently possess fast response (1100° s−1), large bending actuation strain (1080° m−1), high-power density (272 W m−3), mechanical robustness, easy-programmable motions, and human-tactile comfort, which outperforms currently reported textile-based pneumatic actuators. Furthermore, due to the geometrical transition of the engineered hierarchical structure, the developed actuators exhibit superior dual-stiffness effect with stress evolution, providing a facile approach to addressing the conflict of flexibility and force output in soft fluidic actuators. This concept as a paradigm provides new insights to develop soft actuators with outstanding design flexibility, adaptability, and multifunctionality using engineered textile-structure, which has great potential for real-world applications in medical rehabilitation, physiotherapy, and soft robotics.  相似文献   

14.
Hydrogel-based soft electronics (HSE) is promising as implantable devices due to the similarity of hydrogel substrates to biologic tissues. Most existing HSE devices are based on conducting hydrogels that usually have weak mechanical properties, low conductivity, and poor patternability. Reported here is an HSE with good mechanical performance, high sensitivity, and versatile functions by stencil printing of liquid metal on a tough hydrogel, facilitating integration of multiple sensing units. Self-shaping ability is imparted to the HSE by creating gradient structure in the hydrogel substrate. The resultant HSE actively deforms into 3D configurations with zero or nonzero Gaussian curvature to fix on objects or organs with sophisticated geometries and maintains the sensing functions. The versatilities and potential applications of this HSE are demonstrated by monitoring motions of a rice field eel and beatings of a rabbit heart. Such HSE based on morphing substrate should pave the way for implantable electronics with better fixation and interfacial contact with the organs. The concept of morphing hydrogel devices can be extended to other soft electronics with responsive polymer films or elastomers as the substrates.  相似文献   

15.
Skin vision can be found in many invertebrates, such as earthworms, jellyfish, and octopuses using light‐sensitive rod cells in the skin. It enables optical perception and colorimetric responses, providing intriguing capabilities that human skin does not have. A bioinspired wireless, battery‐free, artificial skin vision (ASV) device consisting of flexible optical and optoelectronic components which essentially mimic the hierarchical structures and biological functions of rod cells in a skin‐like configuration for light sensing and signal processing is developed. The ASV device can collect sweat with integrated microfluidic channels and allow real‐time measurement of on‐skin fluids by monitoring the intrinsic optical properties via a customizable microprism light filter. The device also shows sensitive colorimetric responses to input stimulus at chosen detection wavelengths and demonstrates a capacity for in situ quantitative analysis of biomarkers in sweat through alternative colorimetric light filters. Multiple ASVs together create a body area network with a collection of wireless sensors that can work in parallel to acquire multidimensional human physiological signals and predict fitness variations using a specified deep learning neural network. The system has potential applications in biomimetic engineering, physiological monitoring, and intelligent personalized diagnostics.  相似文献   

16.
Optical lenses with tunable focus are needed in several fields of application, such as consumer electronics, medical diagnostics and optical communications. To address this need, lenses made of smart materials able to respond to mechanical, magnetic, optical, thermal, chemical, electrical or electrochemical stimuli are intensively studied. Here, we report on an electrically tunable lens made of dielectric elastomers, an emerging class of “artificial muscle” materials for actuation. The optical device is inspired by the architecture of the crystalline lens and ciliary muscle of the human eye. It consists of a fluid‐filled elastomeric lens integrated with an annular elastomeric actuator working as an artificial muscle. Upon electrical activation, the artificial muscle deforms the lens, so that a relative variation of focal length comparable to that of the human lens is demonstrated. The device combined optical performance with compact size, low weight, fast and silent operation, shock tolerance, no overheating, low power consumption, and possibility of implementation with inexpensive off‐the‐shelf elastomers. Results show that combing bioinspired design with the unique properties of dielectric elastomers as artificial muscle transducers has the potential to open new perspectives on tunable optics.  相似文献   

17.
Electronic skin (e‐skin) technology is an exciting frontier to drive the next generation of wearable electronics owing to its high level of wearability, enabling high accuracy to harvest information of users and their surroundings. Recently, biomimicry of human and biological skins has become a great inspiration for realizing novel wearable electronic systems with exceptional multifunctionality as well as advanced sensory functions. This review covers and highlights bioinspired e‐skins mimicking perceptive features of human and biological skins. In particular, five main components in tactile sensation processes of human skin are individually discussed with recent advances of e‐skins that mimic the unique sensing mechanisms of human skin. In addition, diverse functionalities in user‐interactive, skin‐attachable, and ultrasensitive e‐skins are introduced with the inspiration from unique architectures and functionalities, such as visual expression of stimuli, reversible adhesion, easy deformability, and camouflage, in biological skins of natural creatures. Furthermore, emerging wearable sensor systems using bioinspired e‐skins for body motion tracking, healthcare monitoring, and prosthesis are described. Finally, several challenges that should be considered for the realization of next‐generation skin electronics are discussed with recent outcomes for addressing these challenges.  相似文献   

18.
Biological soft robots have attracted extensive attention and research because of their superiority in executing designed biomedical missions compared with conventional robots. Here, inspired by the crawling mechanism of snakes and caterpillars, a novel biological soft robot composed of asymmetric claws, a carbon nanotube (CNT)‐induced myocardial tissue layer, and a structural color indicator is presented. The asymmetric claws can assist the whole soft robot to accomplish directional movement during the cardiomyocytes' contraction process. The oriented conduct of the CNT layer can regulate the cardiomyocytes' arrangement and improve their beating capability and the contraction performance. However, the structural color indicator provides a visualized monitoring approach to dynamically and immediately reflect the motion status of the biological soft robots. With these three functional layers, the cardiomyocyte‐driven soft robot can greatly simulate the crawling behavior of a caterpillar. It is demonstrated that by integrating these soft robots in a microfluidic organ‐on‐a‐chip system with multitrack construction, they can run along the tracks and exhibit different running speed based on the stimulus concentrations in the tracks. These features indicate the potential values of the cardiomyocyte‐driven soft robots for providing an effective screening platform for clinical diseases.  相似文献   

19.
Wearable electronics have become an important part of daily lives. However, its rapid development results in the problem of electronic waste (e-waste). Consequently, recyclable materials suitable for wearable electronics are highly sought after. In this study, a conductive recyclable composite (PFBC) is designed based on a dynamic covalently cross-linked elastomer and hierarchical hybrid nanofillers. The PFBC shows excellent wide-ranging properties including processability, elasticity, conductivity, and stability, which are superior to previous materials used for recyclable electronics, and exhibits outstanding mechanical properties and environmental tolerance including high temperature, high humidity, brine, and ethanol owing to its covalent cross-linking. Reversible dissociation of Diels–Alder networks allows for convenient processing and recycling. After three recycles, the toughness of the PFBC remained at 10.1 MJ m−3, which is conspicuous among the reported recyclable electronic materials. Three types of PFBC-based wearable electronics including a triboelectric nanogenerator, a capacitive pressure sensor, and a flexible keyboard, are successfully 3D printed with excellent performance. The PFBC possessed both recyclability and degradability, the combination of which provides a new way to reduce e-waste. This is the first work to recycle electronics using direct 3D printing and presents promising new design principles and materials for wearable electronics.  相似文献   

20.
This paper presents materials and core/shell architectures that provide optimized mechanical properties in packages for stretchable electronic systems. Detailed experimental and theoretical studies quantitatively connect the geometries and elastic properties of the constituent materials to the overall mechanical responses of the integrated systems, with a focus on interfacial stresses, effective modulus, and maximum extent of elongation. Specific results include core/shell designs that lead to peak values of the shear and normal stresses on the skin that remain less than 10 kPa even for applied strains of up to 20%, thereby inducing minimal somatosensory perception of the device on the human skin. Additional, strain‐limiting mesh structures embedded in the shell improve mechanical robustness by protecting the active components from strains that would otherwise exceed the fracture point. Demonstrations in precommercial stretchable electronic systems illustrate the utility of these concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号