首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiset canonical correlation analysis (MCCA) is difficult to effectively express the integrated correlation among multiple feature vectors in feature fusion. Thus, this paper firstly presents a novel multiset integrated canonical correlation analysis (MICCA) framework. The MICCA establishes a discriminant correlation criterion function of multi-group variables based on generalized correlation coefficient. The criterion function can clearly depict the integrated correlation among multiple feature vectors. Then the paper presents a multiple feature fusion theory and algorithm using the MICCA method. The detailed process of the algorithm is as follows: firstly, extract multiple feature vectors from the same patterns by using different feature extraction methods; then extract multiset integrated canonical correlation features using MICCA; finally form effective discriminant feature vectors through two given feature fusion strategies for pattern classification. The multi-group feature fusion method based on MICCA not only achieves the aim of feature fusion, but also removes the redundancy between features. The experiment results on CENPARMI handwritten Arabic numerals and UCI multiple features database show that the MICCA method has better recognition rates and robustness than the fusion methods based on canonical correlation analysis (CCA) and MCCA.  相似文献   

2.
A new method of feature fusion and its application in image recognition   总被引:9,自引:0,他引:9  
  相似文献   

3.
Multiset canonical correlation analysis (MCCA) is a powerful technique for analyzing linear correlations among multiple representation data. However, it usually fails to discover the intrinsic geometrical and discriminating structure of multiple data spaces in real-world applications. In this paper, we thus propose a novel algorithm, called graph regularized multiset canonical correlations (GrMCCs), which explicitly considers both discriminative and intrinsic geometrical structure in multiple representation data. GrMCC not only maximizes between-set cumulative correlations, but also minimizes local intraclass scatter and simultaneously maximizes local interclass separability by using the nearest neighbor graphs on within-set data. Thus, it can leverage the power of both MCCA and discriminative graph Laplacian regularization. Extensive experimental results on the AR, CMU PIE, Yale-B, AT&T, and ETH-80 datasets show that GrMCC has more discriminating power and can provide encouraging recognition results in contrast with the state-of-the-art algorithms.  相似文献   

4.
基于CCA的人耳和侧面人脸特征融合的身份识别*   总被引:2,自引:0,他引:2  
鉴于人耳和人脸特殊的生理位置关系,从非打扰识别的角度出发,提出仅采集侧面人脸图像,利用典型相关分析的思想提取人耳和侧面人脸的关联特征,进行人耳和侧面人脸在特征层的融合.实验结果表明,此方法与单一的人耳或侧面人脸特征识别比较,识别率得到提高.  相似文献   

5.
Linear discriminant analysis (LDA) is a well-known feature extraction technique. In this paper, we point out that LDA is not perfect because it only utilises the discriminatory information existing in the first-order statistical moments and ignores the information contained in the second-order statistical moments. We enhance LDA using the idea of a K-L expansion technique and develop a new LDA-KL combined method, which can make full use of both sections of discriminatory information. The proposed method is tested on the Concordia University CENPARMI handwritten numeral database. The experimental results indicate that the proposed LDA-KL method is more powerful than the existing techniques of LDA, K-L expansion and their combination: OLDA-PCA. What is more, the proposed method is further generalised to suit for feature extraction in the complex feature space and can be an effective tool for feature fusion.An erratum to this article can be found at  相似文献   

6.
KCCA特征提取技术具有处理非线性数据的良好性能,但是存在计算量大、特征提取缓慢的局限性.针对KCCA的这一缺点,在研究KCCA特征提取技术和SVDD分类理论的基础上,提出了一种基于改进KCCA的快速特征提取方法,并将改进后的KCCA与SVDD的优势相结合应用于人脸识别中.通过在ORL人脸库上的实验仿真和对比结果验证了所提出方法的有效性.  相似文献   

7.
Correlated information between multiple views can provide useful information for building robust classifiers. One way to extract correlated features from different views is using canonical correlation analysis (CCA). However, CCA is an unsupervised method and can not preserve discriminant information in feature extraction. In this paper, we first incorporate discriminant information into CCA by using random cross-view correlations between within-class examples. Because of the random property, we can construct a lot of feature extractors based on CCA and random correlation. So furthermore, we fuse those feature extractors and propose a novel method called random correlation ensemble (RCE) for multi-view ensemble learning. We compare RCE with existing multi-view feature extraction methods including CCA and discriminant CCA (DCCA) which use all cross-view correlations between within-class examples, as well as the trivial ensembles of CCA and DCCA which adopt standard bagging and boosting strategies for ensemble learning. Experimental results on several multi-view data sets validate the effectiveness of the proposed method.  相似文献   

8.
苏志勋  刘艳艳  刘秀平  周晓杰 《计算机工程》2007,33(16):144-146,149
利用典型相关分析(CCA)和隶属度的思想,提出一种基于模糊典型相关分析的图像特征提取新方法。通过分析图像样本的分布特点,定义合适的隶属度函数描述图像空间的样本分布。利用CCA进行多信息源特征提取,得到同时包含图像灰度信息和分布信息的有效判别特征。可证明Fisher线性判别分析是该算法的一种极限情形。在ORL标准人脸数据库上的实验结果表明新特征具有良好的分类能力,证实了该方法的有效性。  相似文献   

9.
This paper proposes a kind of generalized canonical projective vectors (GCPV), based on the framework of canonical correlation analysis (CCA) applying image recognition. Apart from canonical projective vectors (CPV), the process of obtaining GCPV contains the class information of samples, such that the combined features extracted according to the basis of GCPV can give a better classification performance. The experimental result based on the Concordia University CENPARMI handwritten Arabian numeral database has proved that our method is superior to the method based on CPV.  相似文献   

10.
In graph embedding based methods, we usually need to manually choose the nearest neighbors and then compute the edge weights using the nearest neighbors via L2 norm (e.g. LLE). It is difficult and unstable to manually choose the nearest neighbors in high dimensional space. So how to automatically construct a graph is very important. In this paper, first, we give a L2-graph like L1-graph. L2-graph calculates the edge weights using the total samples, avoiding manually choosing the nearest neighbors; second, a L2-graph based feature extraction method is presented, called collaborative representation based projections (CRP). Like SPP, CRP aims to preserve the collaborative representation based reconstruction relationship of data. CRP utilizes a L2 norm graph to characterize the local compactness information. CRP maximizes the ratio between the total separability information and the local compactness information to seek the optimal projection matrix. CRP is much faster than SPP since CRP calculates the objective function with L2 norm while SPP calculate the objective function with L1 norm. Experimental results on FERET, AR, Yale face databases and the PolyU finger-knuckle-print database demonstrate that CRP works well in feature extraction and leads to a good recognition performance.  相似文献   

11.
针对传统典型相关分析(Canonical Correlation Analysis,CCA)的图像识别中出现的小样本(Small Sample Size,SSS)问题,提出二维典型相关分析(Two-Dimensional CCA,2DCCA)。首先阐述了2DCCA方法的基本原理并给出了类成员关系矩阵的构造方法,推导出了类成员关系协方差矩阵广义逆的解析解。其次,从理论上证明了2DCCA方法对于解决小样本问题的有效性。最后,利用人脸识别实验来测试该方法的性能,实验结果表明,2DCCA方法有效地解决了图像识别中常见的小样本问题,并且能取得较其他几种基于CCA的人脸识别方法更优的识别结果。  相似文献   

12.
通过对传统的基于向量的典型相关分析(CCA)方法进行改进,提出了一种新的直接基于特征矩阵的二维典型相关分析方法(2DCCA),并将其应用于人脸识别的特征融合过程中。较基于向量的典型相关分析,该方法的优点主要有两点:第一,该方法计算过程中构造的协方差矩阵维数大幅度减小,这在一定程度上避免了人脸识别中存在的“高维小样本问题”;第二,由于协方差矩阵维数的缩减,使特征抽取的速度明显提高。最后在ORL标准人脸库和AR大型人脸数据库上的实验结果有效地验证了这两点。  相似文献   

13.
一种新的特征提取方法及其在模式识别中的应用   总被引:2,自引:0,他引:2  
刘宗礼  曹洁  郝元宏 《计算机应用》2009,29(4):1032-1035
核典型相关分析(KCCA)是一种有监督的机器学习方法,可以有效地提取非线性特征。然而随着训练样本数目的增加,标准的KCCA方法的计算复杂度会随之增加。针对此缺点,提出一种改进的KCCA方法:首先用几何特征选择方法选择一个训练样本子集并将其映射到再生核希尔伯特空间(RKHS),然后设计了一种提升特征提取效率的算法,该算法按照对特征分类贡献的大小巧妙地选取样本的特征值,进而求出其相应的特征向量,最后将改进的KCCA与支持向量数据描述(SVDD)多分类器相结合用于分类识别。在ORL人脸图像数据库上的实验结果表明,改进的方法相对传统的KCCA方法,在不影响识别率的情况下提高了人脸识别速度,减小了系统存储量。  相似文献   

14.
增强的典型相关分析及其在人脸识别特征融合中的应用   总被引:2,自引:0,他引:2  
在传统的典型相关分析(CCA)基础上,定义了类别相关性,提出了增强典型相关分析(ECCA)方法.对于一个模式空间的2个观测空间(对任意模式都有2种观测向量),ECCA能够找到这2个观测空间对类别而言更有意义的相关子空间,且同时保持了投影分量的无关性.实验结果表明,ECCA优于CCA,GCCA融合方法.  相似文献   

15.
Due to the noise disturbance and limited number of training samples, within-set and between-set sample covariance matrices in canonical correlation analysis (CCA) usually deviate from the true ones. In this paper, we re-estimate within-set and between-set covariance matrices to reduce the negative effect of this deviation. Specifically, we use the idea of fractional order to respectively correct the eigenvalues and singular values in the corresponding sample covariance matrices, and then construct fractional-order within-set and between-set scatter matrices which can obviously alleviate the problem of the deviation. On this basis, a new approach is proposed to reduce the dimensionality of multi-view data for classification tasks, called fractional-order embedding canonical correlation analysis (FECCA). The proposed method is evaluated on various handwritten numeral, face and object recognition problems. Extensive experimental results on the CENPARMI, UCI, AT&T, AR, and COIL-20 databases show that FECCA is very effective and obviously outperforms the existing joint dimensionality reduction or feature extraction methods in terms of classification accuracy. Moreover, its improvements for recognition rates are statistically significant on most cases below the significance level 0.05.  相似文献   

16.
针对标准的核典型相关分析(KCCA)方法在对训练样本增大的情况下相应计算机复杂度剧增、内存占用量大的缺陷,在对标准的KCCA特征提取方法分析推导的基础上,提出了一种改进的核函数特征提取方法。该方法首先根据特征值的大小对训练样本重要程度进行判断,进而完成对应特征向量的提取;然后通过与SVDD分类器的结合,在对图像识别率影响不大的情况下,提升了对图像特征提取的效率,节省了系统的存储量;最后通过在Yale标准人脸库上进行仿真对比实验,验证了该方法的可行性,从而为提高图像模式识别效率提供了一种有效的途径。  相似文献   

17.
聚类与PCA融合的特征提取方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对主成分分析(Principal Component Analysis,PCA)在克服变量多重相关性中的局限作用,提出了基于K-maxmin聚类的改进PCA特征提取方法,并结合RelieF算法去除分类不相关特征,可进一步提高算法效率和准确性。实验结果表明,该方法的特征提取效果优于传统的PCA方法。  相似文献   

18.
提出了一种基于典型相关分析(CCA)和低通滤波的盲源分离方法去除脑电信号(EEG)中的肌电伪迹.该方法首先将混入了肌电伪迹的EEG信号分解为不相关的CCA分量,然后对与伪迹源相关的分量进行低通滤波处理,去除这些分量中的高频伪迹成分,最后利用与EEG相关的CCA分量和滤波处理后的新分量重构信号,消除肌电伪迹的影响.实验结果表明,采用CCA能够有效地分离出肌电伪迹,而结合低通滤波技术能够更有效地保留EEG信息.该方法取得了较好的去除肌电伪迹的效果.  相似文献   

19.
ECG作为一种活体生物特征用于身份识别在国际上引起了广泛重视.针对基于解析特征的ECG身份识别方法对特征点检测精度要求较高的缺点,提出一种仅需R波峰值点检测的ECG身份识别方法,该方法通过有针对性的设定相应阈值,将PCA特征和小波融合特征方法相结合.实验结果表明该方法优于PCA特征方法、波形特征方法和小波特征方法,既减少了特征点检测的复杂性和特征点检测不准确带来的误差,又可获得较高的识别率,是一种实时、高效算法.  相似文献   

20.
一种新的有监督的局部保持典型相关分析算法   总被引:2,自引:0,他引:2  
从模式识别的角度出发,在局部保持典型相关分析的基础上,提出一种有监督的局部保持典型相关分析算法(SALPCCA)。该方法在构造样本近邻图时将样本的类别信息考虑在内,由样本间的距离度量确定权重,建立样本间的多重权重相关,通过使同类内的成对样本及其近邻间的权重相关性最大,从而能够在利用样本的类别信息的同时,也能保持数据的局部结构信息。此外,为了能够更好地提取样本的非线性信息,将特征集映射到核特征空间,又提出一种核化的SALPCCA(KSALPCCA)算法。在ORL、Yale、AR等人脸数据库上的实验结果表明,该方法较其他的传统典型相关分析方法有着更好的识别效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号