首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, both current and transimpedance mode instrumentation amplification operations are met through a new active building block proposal, namely Current DifferencingTransresistance Amplifier block, CDTRA. In order to regard CDTRA as an instrumentation amplifier (IA), two grounded passive resistors are needed. Passive resistors together with electronically tunable transresistance parameter of active block, rm, set versatility over gain tunability for instrumentation amplifier. Proposed active block is current input, current/voltage output design. It has low impedance input, high impedance for current output, and low impedance for voltage output respectively. Since this particular IA is based on CDTRA, then it inherits these electrical characteristics fully. Numerous SPICE simulations are performed through the paper to verify validity of the study. TSMC 0.18 µm CMOS technology parameters are utilized through simulations. Experimental work is performed for the proposed IA circuit.  相似文献   

2.
Describes a precision switched-capacitor sampled-data instrumentation amplifier using NMOS polysilicon gate technology. It is intended for use as a sample-and-hold amplifier for low level signals in data acquisition systems. The use of double correlated sampling technique achieves high power supply rejection, low DC offset, and low 1/f noise voltage. Matched circuit components in a differential configuration minimize errors from switch channel charge injection. Very high common mode rejection (120 dB) is obtained by a new sampling technique which prevents the common mode signal from entering the amplifier. This amplifier achieves 1 mV typical input offset voltage, greater than 95 dB PSRR, 0.15 percent gain accuracy, 0.01 percent gain linearity, and an RMS input referred noise voltage of 30 /spl mu/V/input sample.  相似文献   

3.
In this paper, a new current controlled instrumentation amplifier structure is proposed. The introduced circuit uses three current controlled conveyors and a single grounded resistor. This structure offers several enhanced advantages in comparison with other current and voltage modes instrumentation amplifiers. It provides attractive features such as: wide bandwidth independent to the differential gain, current tuned gain, high common mode rejection ratio without requiring matched resistors and low supply voltage equal to ±0.75 V. Accordingly, the proposed amplifier is a suitable element for integrated circuit implementation in the medical field. The used second-generation current controlled conveyor has a very simple structure. It is generally constituted of two NPN and seven CMOS transistors and it has numerous interesting characteristics. Theoretical analysis is carried out taking into consideration the non-ideality parameters of the conveyors. The circuit features are corroborated via a PSPICE simulation; the results are also compared to those of the previous structures presented in the literature.  相似文献   

4.
A new preamplifier for suppressing low-frequency interference is presented. The proposed preamplifier, with its front end being implemented by an instrumentation amplifier, enjoys the following advantages: differential high-pass filtering, high input impedance, high common--mode rejection ratio and low passive sensitivity. This circuit can be realized with commercial operational amplifiers with enough phase margin, or fabricated in a chip for practical measurement of physiological signals.  相似文献   

5.
A novel instrumentation amplifier using only current controlled conveyors (CCCIIs) is proposed. The new circuit with no resistors offers a wide bandwidth, a high CMRR, electronically adjustable gain and a good dynamic range. The proposed circuit also provides simultaneously a high impedance output current. The circuit is also analysed for the non-idealities of conveyors. RSPICE simulation results are included to support the proposed theory.  相似文献   

6.
In this paper, a novel topology for implementing resistor-free current-mode instrumentation amplifier (CMIA) is presented. Unlike the other previously reported instrumentation amplifiers (IAs), in which input and/or output signals are in voltage domain, the input and output signals in the proposed structure are current signals and signal processing is also completely done in current domain benefiting from the full advantages of current-mode signal processing. Interestingly the CMRR of the proposed topology is wholly determined by only five transistors. Compared to the most of the previously reported IAs in which at least two active elements are used to attain high common-mode rejection ratio (CMRR) resulting in a complicated circuit, the proposed structure enjoys from an extremely simple circuit. It also exhibits low input impedance employing negative feedback principal. Of more interest is that, using simple degenerate current mirrors, the differential-mode gain of the proposed CMIA can be electronically varied by control voltage. This property makes it completely free of resistors. The very low number of transistors used in the structure of the proposed CMIA grants it such desirable properties as low-voltage low-power operation, suitability for integration, wide bandwidth etc. SPICE simulation results using the TSMC 0.18-μm CMOS process model under supply voltage of ±0.8 V show a high CMRR of 91 dB and a low input impedance of 291.5 Ω for the proposed CMIA. Temperature simulation results are also provided, which prove low temperature sensitivity of the proposed CMIA.  相似文献   

7.
邓宏贵  曹祥  罗安  曹建 《光电子技术》2005,25(4):229-233
在比较A类、B类、C类和介于A类、B类中间的AB类四类功放电路各自优缺点的基础上,提出功率放大器工作点的选取以及通过阻抗匹配来实现高效率的方法。讨论了放大器输入回路阻抗变换电路、晶体管放大电路以及输出回路阻抗变换电路的设计思想,运用电报方程从理论上推导出用于信号源和晶体管之间阻抗变换的传输线变压器输入输出阻抗计算公式,由此设计出模拟信号处理电路中非常重要的AB类高功率放大器。仿真和实验结果表明,放大器在1MHz~50MHz的范围内,输入0.1w时输出为1w,其增益达到10dB,并且失真率非常低。  相似文献   

8.
A current-controlled impedance converter is described which is implemented using two translinear active devices: a current conveyor with unity gain and an adjustable differential current-mode amplifier. It has low parasitic input impedance and useful properties when the amplifier gain is near unity. To characterize the circuit, SPICE simulation results are given and discussed.  相似文献   

9.
In this paper a new low-voltage low-power instrumentation amplifier (IA) is presented. The proposed IA is based on supply current sensing technique where Op-Amps in traditional IA based on this technique are replaced with voltage buffers (VBs). This modification results in a very simplified circuit, robust performance against mismatches and high frequency performance. To reduce the required supply voltage, a low-voltage resistor-based current mirror is used to transfer the input current to the load. The input and output signals are of voltage kind and the proposed IA shows ideal infinite input impedance and a very low output one. PSPICE simulation results, using 0.18 μm TSMC CMOS technology and supply voltage of ±0.9 V, show a 71 dB CMRR and a 85 MHz constant −3 dB bandwidth for differential-mode gain (ranging from 0 dB to 18 dB). The output impedance of the proposed circuit is 1.7 Ω and its power consumption is 770 µW. The method introduced in this paper can also be applied to traditional circuits based on Op-Amp supply current sensing technique.  相似文献   

10.
CMOS 电路是高输入阻抗,而长波红外光导探测器是低阻抗,实现低阻抗红外光导探测器与CMOS 电路的良好匹配,是目前长波红外探测器高性能成像的关键技术。文中设计了一种能在低温下工作的低阻抗红外光导探测器CMOS 电路,差分放大器采用正负电源供电,在输入级采用桥式输入方式,该电路第一级采用1M的负反馈电阻实现信号放大,第二级放大采用正端放大方式,输入级、第一级放大、第二级放大均采用直接耦合方式。测试结果表明,该放大器与长波红外低输入阻抗光导探测器连接后能正常工作,总放大倍数大于1 万倍,3 dB 带宽大于4 kHz,等效输入电压噪声小于1.5 V,有效地解决了低阻抗光导探测器与高阻CMOS 电路的匹配问题。  相似文献   

11.
AC coupled three op-amp biopotential amplifier with active DC suppression   总被引:2,自引:0,他引:2  
A three op-amps instrumentation amplifier (I.A) with active dc suppression is presented. dc suppression is achieved by means of a controlled floating source at the input stage, to compensate electrode and op-amps offset voltages. This isolated floating source is built around an optical-isolated device using a general-purpose optocoupler, working as a photovoltaic generator. The proposed circuit has many interesting characteristics regarding simplicity and cost, while preserving common mode rejection ratio (CMRR) and high input impedance characteristics of the classic three op-amps I.A. As an example, a biopotential amplifier with a gain of 80 dB, a lower cutoff frequency of 0.1 Hz, and a dc input range of +/- 8 mV was built and tested. Using general-purpose op-amps, a CMRR of 105 was achieved without trimmings.  相似文献   

12.
In this paper, a Current Mode Instrumentation Amplifier (CMIA) is presented. The proposed circuit employs two Extra X Current Controlled Current Conveyors (EX-CCCII) and a single grounded resistor. The circuit offers a wide differential-gain bandwidth, wide CMRR bandwidth, and electronically tunable differential gain. The circuit offers cascadibility feature with input impedance of 2.167 kΩ which is very small in comparison to the output impedance of 2.17 MΩ. Simultaneously, a Transresistance (TR) instrumentation amplifier is also obtained with the features of electronically tunable high differential gain and wide bandwidth. The effect of non-idealities of EX-CCCII on the circuit performance is also analysed. The validity of the proposed circuit is verified through PSPICE simulations using 0.25 µm parameters with a supply voltage of ±1.25 V. Also, the circuit is verified by experimental results.  相似文献   

13.
采用离子选择电极法测量溶液中某种离子的离子浓度时,离子选择电极与参比电极间产生一个电势差。基于电势差信号的低频率、低幅值和输入高阻抗的特点,设计了一种用于离子选择电极信号采集的前置放大器。该放大器主要由传感器电极、低通滤波电路、超高输入阻抗放大电路、差分式放大电路和50Hz陷波电路等组成。该前置放大器提供了高达10^12Ω 的输入阻抗,并且很好的降低了共模信号的干扰以及工频干扰,可以较好的采集到离子选择电极的微弱信号。  相似文献   

14.
周银强  高博  龚敏  高胜凯 《微电子学》2016,46(6):731-735
针对GPS接收机低功耗、低噪声、高增益的要求,采用功率限制下噪声匹配技术、阻抗匹配技术和电源复用技术,设计了一款可应用于GPS接收机的单端输入差分输出低噪声放大器,减少了巴伦损耗。采用SMIC 0.13 SymbolmAm CMOS RF工艺和全定制集成电路设计方法,工作频率为1575 GHz,对电路进行版图后仿真。仿真结果表明,该低噪声放大器在1.2 V电源电压下,功耗为4.8 mW,增益为22.65 dB,噪声系数为1.388 dB。  相似文献   

15.
A novel CMOS variable gain amplifier operating on current signals with a dB-linear gain control is presented. The gain control is achieved by multiplying a digitally synthesized exponentially varying control current signal by a differential input signal in the current domain. A current amplifier at the output sets the gain to the desired level. Current-mode operation allows for a reduced supply voltage by minimizing the voltage swing at the low impedance nodes of the circuit. Multiple circuit realizations for various blocks are presented allowing for designs meeting different constraints. Experimental realization of the variable gain amplifier shows the validity of the presented approach.  相似文献   

16.
石丹  高博  龚敏 《半导体光电》2018,39(2):201-205,215
针对生物信号微弱、变化范围大等特点设计了一种用于检测微弱电流的全差分跨阻放大器(TIA)电路结构。不同于传统电路的单端输入,该结构采用高增益的全差分两级放大器实现小信号输入及轨到轨输出。基于CSMC 0.18μm CMOS工艺,采用1.8V电源电压对设计的电路进行了仿真,仿真结果表明:TIA输入电流动态范围为100nA^10μA,最大跨阻增益达到104.38dBΩ,-3dB带宽为4MHz,等效输入噪声电流为1.26pA/Hz。对电路进行跨阻动态特性仿真表明,在输入电流为100nA时,输出电压的动态摆幅达到3.24mV,功耗仅为250μW,总谐波失真(THD)为-49.93dB。所设计的高增益、低功耗、宽输入动态范围TIA适用于生物医疗中极微小生物信号的采集,可作为模块电路集成在便携设备中。  相似文献   

17.
设计了一款应用在433MHz ASK接收机中的射频前端电路。在考虑了封装以及ESD保护电路的寄生效应的同时,从噪声、匹配、增益和线性度等方面详细讨论了低噪声放大器和下混频器的电路设计。采用0.18μm CMOS工艺,在1.8V的电源电压下射频前端电路消耗电流10.09 mA。主要的测试结果如下:低噪声放大器的噪声系数、增益、输入P1dB压缩点分别为1.35 dB、17.43 dB、-8.90dBm;下混频器的噪声系数、电压增益、输入P1dB压缩点分别为7.57dB、10.35dB、-4.83dBm。  相似文献   

18.
本文给出一种应用于无线传感器网络射频前端低噪声放大器的设计,采用SMIC0.18μmCMOS工艺模型。在CadenceSpectre仿真环境下的仿真结果表明:该低噪声放大器满足射频前端的系统要求,在2.45GHz的中心频率下增益可调,高增益时,噪声系数为2.9dB,输入P1dB压缩点为-19.8dBm,增益为20.5dB;中增益时,噪声系数为3.6dB,输入P1dB压缩点为-15.8dBm,增益为12.5dB;低增益时,噪声系数为6.0dB,输入P1dB压缩点为-16.4dB,增益为2.2dB。电路的输入输出匹配良好,在电源电压1.8V条件下,工作电流约为6mA。  相似文献   

19.
针对传统运算放大器共模抑制比和电源抑制比低的问题,设计了一种差分输入结构的折叠式共源共栅放大器。本设计采用两级结构,第一级为差分结构的折叠式共源共栅放大器,并采用MOS管作为电阻,进一步提高增益、共模抑制比和电源电压抑制比;第二级采用以NMOS为负载的共源放大器结构,提高增益和输出摆幅。基于LITE—ON40V1.0μm工艺,采用Spectre对电路进行仿真。仿真结果表明,电路交流增益为125.8dB,相位裕度为62.8°,共模抑制比140.9dB,电源电压抑制比125.5dB。  相似文献   

20.
AC-coupled front-end for biopotential measurements   总被引:5,自引:0,他引:5  
AC coupling is essential in biopotential measurements. Electrode offset potentials can be several orders of magnitude larger than the amplitudes of the biological signals of interest, thus limiting the admissible gain of a dc-coupled front end to prevent amplifier saturation. A high-gain input stage needs ac input coupling. This can be achieved by series capacitors, but in order to provide a bias path, grounded resistors are usually included, which degrade the common mode rejection ratio (CMRR). This paper proposes a novel balanced input ac-coupling network that provides a bias path without any connection to ground, thus resulting in a high CMRR. The circuit being passive, it does not limit the differential dc input voltage. Furthermore, differential signals are ac coupled, whereas common-mode voltages are dc coupled, thus allowing the closed-loop control of the dc common mode voltage by means of a driven-right-leg circuit. This makes the circuit compatible with common-mode dc shifting strategies intended for single-supply biopotential amplifiers. The proposed circuit allows the implementation of high-gain biopotential amplifiers with a reduced number of parts, thus resulting in low power consumption. An electrocardiogram amplifier built according to the proposed design achieves a CMRR of 123 dB at 50 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号