共查询到20条相似文献,搜索用时 0 毫秒
1.
Ziqiang Cheng Kevin M. Tenny Alberto Pizzolato Antoni Forner-Cuenca Vittorio Verda Yet-Ming Chiang Fikile R. Brushett Reza Behrou 《American Institute of Chemical Engineers》2022,68(4):e17540
High-dimensional models typically require a large computational overhead for multiphysics applications, which hamper their use for broad-sweeping domain interrogation. Herein, we develop a modeling framework to capture the through-plane fluid dynamic response of electrodes and flow fields in a redox flow cell, generating a computationally inexpensive two-dimensional (2D) model. We leverage a depth-averaging approach that also accounts for variations in out-of-plane fluid motion and departures from Darcy's law that arise from averaging across three-dimensions (3D). Our resulting depth-averaged 2D model successfully predicts the fluid dynamic response of arbitrary in-plane flow field geometries, with discrepancies of <5% for both maximum velocity and pressure drop. This corresponds to reduced computational expense, as compared to 3D representations (<1% of duration and 10% of RAM usage), providing a platform to screen and optimize a diverse set of cell geometries. 相似文献
2.
The combination of interdigitated flow fields (IDFF) with porous electrodes offers lower pressure drop and better performance than conventional flow‐through porous electrodes in redox flow batteries. Comprehensive three‐dimensional and simplified one‐dimensional + two‐dimensional models describing flow uniformity and pressure losses within flow through, parallel, and interdigitated flow fields were developed and used to demonstrate the benefits of IDFF. Analytical solutions for IDFF that compare favorably with computational fluid dynamics quantify the trade between pressure loss and velocity maldistribution both along the channels and within the electrode. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3746–3755, 2018 相似文献
3.
Serpentine channels adjacent to a thin, porous medium are a potentially attractive alternative to a conventional thick flow-through electrode for redox flow batteries. The hydrodynamics of serpentine flow fields were investigated with computational fluid dynamics, a two-dimensional model of the porous electrode based on Darcy's law, and a resistance network model at the scale of the active area. Predictions from the three models were used to map the available design space. The optimal electrode thickness, in terms of minimizing nonuniformity, was identified and compared to the result for an interdigitated flow field. Serpentine favors thicker electrodes and higher flows than interdigitated, in qualitative agreement with experimental findings. Furthermore, interdigitated designs deliver more uniform intraelectrode velocities and lower overall pressure drops than serpentine flow fields. 相似文献
4.
Pressure drop through platinized titanium porous electrodes for cerium‐based redox flow batteries 下载免费PDF全文
Luis F. Arenas Carlos Ponce de León Frank C. Walsh 《American Institute of Chemical Engineers》2018,64(3):1135-1146
The pressure drop, , across a redox flow battery is linked to pumping costs and energy efficiency, making fluid properties of the electrolyte important in scale‐up operations. The at diverse platinized titanium electrodes in Ce‐based redox flow batteries is reported as a function of mean linear electrolyte velocity measured in a rectangular channel flow cell. Darcy's friction factor and permeability vs. Reynolds number are calculated. Average permeability values are: 7.10 × 10?4 cm2 for Pt/Ti mesh, 4.45 × 10?4 cm2 for Pt/Ti plate + turbulence promoters, 1.67 × 10?5 cm2 for Pt/Ti micromesh, and 1.31 × 10?6 cm2 for Pt/Ti felt. The electrochemical volumetric mass transport coefficient, , is provided as a function of . In the flow‐by configuration, Pt/Ti felt combines high values with a relatively high , followed by Pt/Ti micromesh. Pt/Ti mesh and Pt/Ti plate gave a lower but poorer electrochemical performance. Implications for cell design are discussed. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1135–1146, 2018 相似文献
5.
6.
Both anodic and cathodic chromium-EDTA (ethylenediaminetetra-acetate) complex redox processes have been studied using cyclic voltammetry. Their potential use in a redox battery has been evaluated by comparing the charge and discharge performance of a simple redox battery employing several redox couples including the conventional Fe-Cr redox couples. The cyclic voltammetry experiments suggested that oxidation of Cr(III)-EDTA formed Cr(V)-EDTA rather than a hexavalent chromium species. It was found that the kinetics of the Cr(III)-EDTA/Cr(II)-EDTA redox reaction are fast at a graphite rod electrode, whereas the Cr(V)-EDTA/Cr(III)-EDTA redox reaction is relatively slow. In spite of the slow kinetics, the battery employing solely these chromium-EDTA based redox couples provided higher energy output and longer life than the conventional Fe-Cr redox system. 相似文献
7.
8.
9.
10.
Yona Lee Sangwon Kim Rolf Hempelmann Jong Hyun Jang Hyoung-Juhn Kim Jonghee Han Jihyun Kim Dirk Henkensmeier 《应用聚合物科学杂志》2019,136(21):47547
Sulfonated copper phthalocyanine (CuPCSA) was embedded into Nafion membranes in ratios of 0, 1.25, 2.5, 5, and 7.5 wt %. The absence of CuPCSA related peaks in WAXS patterns indicated that CuPCSA did not form crystalline phases during membrane formation. Tensile strength and Young's modulus were highest in the range of 2.5–5 wt % CuPCSA. As demonstrated for Nafion 212, the weight gain and swelling in water-based solutions decreases when the sulfuric acid concentration increases from 0 to 2 M. In 2 M sulfuric acid, addition of CuPCSA increases the weight gain. In contact with VO2+, blue CuPCSA is oxidatively hydrolyzed to form colorless sulfonated phthalimide. XPS analysis showed that (1) this reaction is quantitative and (2) that the sulfonated phthalimide does not leach out from the membrane during operation in the flow battery. The coulomb efficiency increases with the amount of phthalimide. This affects the energy efficiency so strongly, that it follows the same trend as the coulomb efficiency. During cycling, the cell with Nafion/7.5 wt % filler showed the highest discharge capacity and the lowest difference between charge and discharge capacity. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47547. 相似文献
11.
The graphite plate is easily suffered from corosion because of CO2 evolution when it acts as the positive electrode for vanadium redox flow battery. The aim is to obtain the initial potential for gas evolution on a positive graphite electrode in 2 mol dm−3 H2SO4 + 2 mol dm−3 VOSO4 solution. The effects of polarization potential, operating temperature and polarization time on extent of graphite corrosion are investigated by potentiodynamic and potentiostatic techniques. The surface characteristics of graphite electrode before and after corrosion are examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results show that the gas begins to evolve on the graphite electrode when the anodic polarization potential is higher than 1.60 V vs saturated calomel electrode at 20 °C. The CO2 evolution on the graphite electrode can lead to intergranular corrosion of the graphite when the polarization potential reaches 1.75 V. In addition, the functional groups of COOH and CO introduced on the surface of graphite electrode during corrosion can catalyze the formation of CO2, therefore, accelerates the corrosion rate of graphite electrode. 相似文献
12.
A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer–Emmett–Teller method. The redox reactions of [VO2]+/[VO]2+ and V3+/V2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO2]+/[VO]2+ and V3+/V2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO. 相似文献
13.
14.
15.
摘要〖HTSS〗:采用电化学方法分析了不同含量木质素磺酸钠对钒电池正极电解液的影响。交流阻抗、紫外可见光谱和单电池充放电实验验证了木质素磺酸钠添加后的效果。分析结果表明:添加量为0.1% 时,电荷传递电阻由5.446Ω·cm2 减小到1.002Ω·cm2 ,双电层电容由4.16×10-4F·cm-2 减小到1.298×10-4F·cm-2 ,添加不同含量的木质素磺酸钠并没有显著影响激发态波长和吸光度,但是充放电性能显著提高,这表明木质素磺酸钠具有很强的化学及电化学稳定性,有利于提高钒离子的传导和电能的储存。 相似文献
16.
17.
18.
19.
在全钒电池(VFB)用离子交换膜中,阴离子交换膜以其钒离子渗透率低这一主要优势受到了广泛的关注。以N-溴代丁二酰亚胺(NBS)为溴化试剂,2,2'-偶氮二异丁腈(AIBN)为引发剂,对聚苯醚(PPO)的苄甲基溴化;以N-正丁基咪唑为功能化试剂,制备了一种非氟咪唑型聚苯醚阴离子交换膜。研究了不同N-正丁基咪唑功能化程度的阴离子交换膜的离子传导率、离子交换容量(IEC)、含水率、钒离子传递系数等性能,并与N-甲基咪唑功能化的阴离子交换膜做了对比。结果显示,N-正丁基咪唑功能化聚苯醚阴离子交换膜的钒离子传递系数为4.8×10-9 cm·min-1,60℃时离子传导率为10.8 mS·cm-1,且化学稳定性及力学性能优异,具有在钒电池中应用的潜力。 相似文献
20.
质子交换膜(PEM)作为全钒液流电池(VRFB)的核心组件之一,应当解决成本高昂、合成过程复杂等问题,并具备高质子传导率、低钒离子渗透率、高机械强度和优异化学稳定性等关键性能。本文基于四甲基双酚芴单体通过缩聚反应合成了一系列聚芴醚酮化合物PFEKs,再利用溴代反应将苯甲基功能化为溴甲基,接着通过4-羟基苯磺酸钠的SN2亲核取代制得了一系列不同离子交换容量的磺化聚芴醚酮聚合物(SPFEKs)。通过溶液浇铸法成膜并酸化,得到一系列新型低成本PEMs。该合成路线的原料来源广泛,价格低廉,不涉及危险的磺化反应,易于工业放大。所得膜都具有良好的机械性能和氧化稳定性,其中SPFEK-40膜具有较高的质子传导率及离子选择性、较低的钒离子渗透率及面电阻,综合性能优异。以SPFEK-40膜组装的VRFB在电流密度为80 mA/cm2时的能量效率(EE)为88.2%,高于以Nafion 212膜组装的VRFB的84.8%。此外,以SPFEK-40膜组装的VRFB在30次循环后放电容量仅衰减至84.3%,远高于以Nafion 212膜组装的VRFB的66.1%。 相似文献