首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
There is a great appeal to develop an omnipotent player combining lithium-ion batteries (LIBs) with the capacitive storage communities. Hybrid capacitors as a kind of promising energy storage device are attracting increasing attention in the main playground in recent years. Unlike supercapacitors (SCs) and LIBs, hybrid capacitors combine a capacitive electrode with a Faradaic battery electrode. In these hybrid cells, the capacitive electrode brings the power while the energy mainly comes from the Faradaic one. Numerous efforts have been conducted in the past decades; however, the research about hybrid capacitors is still at its infancy stage, and it is not expected to replace LIBs or SCs in the near future utterly. Here, the advances of hybrid capacitors, including insertion-type materials, lithium-ion capacitors, and sodium-ion capacitors, are reviewed. This review aims to offer useful guidance for the design of faradic battery electrodes and hybrid cell construction. Brief challenges and opportunities for future research on hybrid capacitors are finally presented.  相似文献   

2.
The rapid growth in electronic and portable devices demands safe, durable, light weight, low cost, high energy, and power density electrode materials for rechargeable batteries. In this context, biomass-based materials and their hybrids are extensively used for energy generation research, which is primarily due to their properties such as large specific surface area, fast ion/electron kinetics, restricted volume expansion, and restrained shuttle effect. In this review, the key advancements in the preparation of biomass derived porous carbons using different synthesis strategies and their modifications with species such as heteroatoms, metal oxides, metal sulfides, silicon, and other carbon forms are discussed. The electrochemical performances of these materials and the ion storage mechanisms in different batteries including lithium-ion, lithium–sulfur, sodium-ion, and potassium-ion batteries are discussed. Special attention will be paid to the challenges in using porous biomass-derived carbons and the current strategies employed for maximizing the specific capacity and lifetime for battery applications. Finally, the drawbacks in current technology and endeavors for the future research and development in the field to catapult the performances of the biomass derived materials in order to equip them to meet the demands of commercialization are highlighted.  相似文献   

3.
Covalent organic frameworks (COFs) have emerged as an exciting new class of porous materials constructed by organic building blocks via dynamic covalent bonds. They have been extensively explored as potentially superior candidates for electrode materials, electrolytes, and separators, due to their tunable chemistry, tailorable structures, and well-defined pores. These features enable rational design of targeted functionalities, facilitate the penetration of electrolytes, and enhance ion transport. This review provides an in-depth summary of the recent progress in the development of COFs for diverse battery applications, including lithium-ion, lithium–sulfur, sodium-ion, potassium-ion, lithium–CO2, zinc-ion, zinc–air batteries, etc. This comprehensive synopsis pays particular attention to the structure and chemistry of COFs and novel strategies that have been implemented to improve battery performance. Additionally, current challenges, possible solutions, and potential future research directions on COFs for batteries are discussed, laying the groundwork for future advances for this exciting class of material.  相似文献   

4.
Graphene, as a fabulously new-emerging carbonaceous material with an ideal two-dimensional rigid honeycomb structure, has drawn extensive attention in the field of material science due to extraordinary properties, including mechanical robustness, large specific surface area, desirable flexibility, and high electronic conductivity. In particular, as an auxiliary material of electrode materials, it has the potential to improve the performance of lithium-ion batteries. However, wide utilization of graphene in lithium-ion batteries is not implemented since tremendous challenges and issues, such as quality, quantity, and cost concerns, hinder its commercialization. There remains a debate whether graphene can act as an impetus in the evolution of lithium-ion batteries. In this review, we summarize the desirable properties, several common synthesis methods as well as applications of graphene as the anode in lithium-ion batteries, seeking to provide insightful guidelines for further development of graphene-based lithium-ion batteries.  相似文献   

5.
The successful development of post-lithium technologies depends on two key elements: performance and economy. Because sodium-ion batteries (SIBs) can potentially satisfy both requirements, they are widely considered the most promising replacement for lithium-ion batteries (LIBs) due to the similarity between the electrochemical processes and the abundance of sodium-based resources. Among various SIB anode materials, metal sulfides are most extensively studied as materials for high-performance electrodes due to the versatility of their synthesis procedure, utilization potential, and high sodiation capacity. Herein, some of the most effective strategies aimed at effectively alleviating the performance shortcomings of these materials from the materials engineering/design perspective are summarized. In terms of facilitating ion transport in SIBs, which represents one of the most critical aspects of their performance, a specific family of strategies related to a particular operational mechanism is considered rather than categorizing based-on individual sulfide materials. In the foreseeable future, the development of highly functional SIBs electrode materials and utilization of metal sulfides will become highly relevant due to their stability and performance characteristics. Therefore, it is anticipated that this review will guide further research and facilitate the realization of various applications of sulfide-based high-performance rechargeable batteries.  相似文献   

6.
In recent years, metal-organic frameworks, especially MOF-based derivatives, have been regarded as one of the best candidate electrode materials for the next generation of advanced materials, due to high porosity, large surface area, modifiable functional groups as well as controllable chemical composition. This review presents the corresponding synthesis methods, structural design, and electrochemical performance of MOF-derived materials, including metal oxides, metal sulfides, metal phosphides, and carbon materials, in high-performance lithium-ion batteries. Subsequently, the problems that exist in the current application of MOF-based derivatives as electrodes in lithium-ion batteries are discussed along with possible and feasible solutions. At last, some reasonable pathways and strategies for the design of MOF derivatives are also suggested.  相似文献   

7.
Rechargeable sodium-ion batteries (SIBs) are emerging as a viable alternative to lithium-ion battery (LIB) technology, as their raw materials are economical, geographically abundant (unlike lithium), and less toxic. The matured LIB technology contributes significantly to digital civilization, from mobile electronic devices to zero electric-vehicle emissions. However, with the increasing reliance on renewable energy sources and the anticipated integration of high-energy-density batteries into the grid, concerns have arisen regarding the sustainability of lithium due to its limited availability and consequent price escalations. In this context, SIBs have gained attention as a potential energy storage alternative, benefiting from the abundance of sodium and sharing electrochemical characteristics similar to LIBs. Furthermore, high-entropy chemistry has emerged as a new paradigm, promising to enhance energy density and accelerate advancements in battery technology to meet the growing energy demands. This review uncovers the fundamentals, current progress, and the views on the future of SIB technologies, with a discussion focused on the design of novel materials. The crucial factors, such as morphology, crystal defects, and doping, that can tune electrochemistry, which should inspire young researchers in battery technology to identify and work on challenging research problems, are also reviewed.  相似文献   

8.
Dual-ion batteries (DIBs), based on the working mechanism involving the storage of cations and anions separately in the anode and cathode during the charging/discharging process, are of great interest beyond lithium-ion batteries (LIBs) in high-efficiency energy storage due to the merits of high working voltage, material availability, as well as low cost and excellent safety. Despite the progress achieved, the practical applications of DIBs are still hindered by negative issues, such as limited capacity and cyclic stability, which triggers the development of suitable electrode materials with highly reversible capacities, and corresponding electrolytes with high oxidative stability as well as sufficient reaction kinetics of active ions. Herein, in this article, a systematic and comprehensive review of fundamentals and recent advances in current DIBs with subcategories of cathode materials, anode materials, and electrolytes are presented. In particular, their energy storage mechanisms, as well as their respective features, are dissected. Furthermore, some strategies and perspectives are proposed for facilitating the further development of DIBs in the future.  相似文献   

9.
As a sodium superionic conductor, Mn-rich phosphate of Na3.4Mn1.2Ti0.8(PO4)3 is considered as one of the promising cathodes for sodium-ion batteries owing to its good thermodynamic stability and high working voltage. However, Na3.4Mn1.2Ti0.8(PO4)3 is faced with low electronic conductivity, poor cycling stability and complex phase transition caused by multi-electron transfers, which limits its practical application. Herein, an anion-regulated strategy is proposed to optimize the Mn-rich Na3.4Mn1.2Ti0.8(PO4)3 phosphate cathode. After introducing F anions into the lattice, the rate performance is improved from 60.5 to 72.8 mAh g−1 at 20 C. Ascribed to unique structure design, the reaction kinetics of Na3.4Mn1.2Ti0.8(PO4)3 are significantly improved, as demonstrated by cyclic voltammetry at varied scan rates and galvanostatic intermittent titration technique. The generated M-F bond inhibits Jahn–Teller effect with an improved cycle stability (85.8 mAh g−1 after 1000 cycles at 5 C with 94.3% capacity retention). Interestingly, reaction mechanism of Na3.4Mn1.2Ti0.8(PO4)3 with the complex two-phase and solid solution reactions changes to the whole solid solution reaction after fluorine substitution, and leads to a smaller volume change of 5.41% during reaction processes, which is verified by in situ X-ray diffraction. This anion regulation strategy provides a new method for designing the high-performance phosphate cathode materials of sodium-ion batteries.  相似文献   

10.
The pursuit of rechargeable batteries with high energy density has triggered enormous efforts in developing cathode materials for lithium/sodium (Li/Na)-ion batteries considering their extremely high specific capacity. Many materials are being researched for battery applications, and transition metal oxide materials with remarkable electrochemical performance stand out among numerous cathode candidates for next-generation battery. Notwithstanding the merits, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density and enhanced safety. This is, in part, because the voltage hysteresis between the charge and discharge cycles, is historically avoided in intercalation electrodes because of its association with structural disorder and electrochemical irreversibility. Given the great potential of these materials for next-generation batteries, a review of the recent understanding of voltage hysteresis is timely. This review presents the origin of their undesirable behaviors and materials design criteria to mitigate them by integrating various schools of thought. A large amount of progressive characterization techniques related to voltage hysteresis are summarized from the literature, along with the corresponding measurable range used in their determination. Finally, promising design trends with eliminated voltage hysteresis are tentatively proposed to revive these important cathode materials toward practical applications.  相似文献   

11.
With the rapid growth in energy consumption, renewable energy is a promising solution. However, renewable energy (e.g., wind, solar, and tidal) is discontinuous and irregular by nature, which poses new challenges to the new generation of large-scale energy storage devices. Rechargeable batteries using aqueous electrolyte and multivalent ion charge are considered more suitable candidates compared to lithium-ion and lead-acid batteries, owing to their low cost, ease of manufacture, good safety, and environmentally benign characteristics. However, some substantial challenges hinder the development of aqueous rechargeable multivalent ion batteries (AMVIBs), including the narrow stable electrochemical window of water (≈1.23 V), sluggish ion diffusion kinetics, and stability issues of electrode materials. To address these challenges, a range of encouraging strategies has been developed in recent years, in the aspects of electrolyte optimization, material structure engineering and theoretical investigations. To inspire new research directions, this review focuses on the latest advances in cathode materials for aqueous batteries based on the multivalent ions (Zn2+, Mg2+, Ca2+, Al3+), their common challenges, and promising strategies for improvement. In addition, further suggestions for development directions and a comparison of the different AMVIBs are covered.  相似文献   

12.
基于"飞电容"技术的动力锂离子电池组保护系统的设计   总被引:1,自引:0,他引:1  
讨论了一种新型、低成本的锂离子电池组保护系统的设计原理及实现方法。在本设计中,为了克服多节电池串联后所带来的高共模电压,引入了"飞电容"电压检测技术,可实现对各单体电池的电压检测,进而解决了串联电池组断线检测的难题。另外,采用了具有纳瓦技术的PIC单片机,提出了相应的硬件设计方案,还引入了分时运行的软件设计方法,实现了低功耗的设计目标。实验结果表明,该系统可靠性高,适应性广,成本低廉,可进一步推进动力锂离子电池的广泛应用。  相似文献   

13.
Rechargeable zinc-ion batteries (ZIBs) have recently attracted attention for applications in energy storage systems owing to their intrinsic safety, low cost, environmental compatibility, and competitive gravimetric energy density. To enable the practical applications of ZIBs, their energy density must be equivalent to the existing commercial lithium-ion batteries. To acquire high-energy density, increasing the operating voltage of the battery is undoubtedly an effective method, which demands cathode material to exhibit a high voltage versus Zn2+/Zn, while matching a highly reversible anode and an electrolyte with a sufficiently wide electrochemical stability window. This review focuses on the design strategies and challenges towards high-voltage ZIBs. First, the basic electrochemistry of ZIBs and the recent progress in various high-voltage cathode materials for ZIBs, including Prussian blue analogs, polyanionic compounds, and metal-based oxides are introduced. The challenges and corresponding countermeasures of these materials are discussed, while strategies to further improve the cathode operating voltage, influence factors of voltage in the redox reaction, and energy storage mechanism are also illustrated. The following section describes the strategies towards high-performance Zn anode, and summarizes the electrolytes that can help increase the battery voltage. The final section outlines the potential development in ZIBs.  相似文献   

14.
综述了近年来新型锂离子电池正极材料LiFePO4的研究进展。从掺杂网状结构碳、碳纳米管、碳纳米纤维以及球形、棒状和空心LiFePO4的制备几个方面,对不同形貌与结构的LiFePO4的研究现状进行了介绍与讨论。碳掺杂可有效提高LiFePO4的导电性,并抑制粒径的增大;减小材料颗粒的粒径,可以从根本上提高颗粒的比表面积,有效减小电荷的移动距离,提高参与电化学反应材料的比例;而材料的特殊形貌有助于形成导电网络,对其导电性能的提高有着十分重要的影响。综上所述,通过减小颗粒的粒径、提高比表面积、掺杂导电剂以及制备更易形成导电网络形貌的材料,是获得优良性能LiFePO4的有效方法。  相似文献   

15.
Sn4P3 binary alloy anode has attracted much attention, not only because of the synergistic effect of P and Sn, but also its universal popularity in alkali metal ion batteries (AIBs), including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs). However, the alkali metal ion (A+) storage and capacity attenuation mechanism of Sn4P3 anodes in AIBs are not well understood. Herein, a combination of ex situ X-ray diffraction, transmission electron microscopy, and density functional theory calculations reveals that the Sn4P3 anode undergoes segregation of Sn and P, followed by the intercalation of A+ in P and then in Sn. In addition, differential electrochemical curves and ex situ XPS results demonstrate that the deep insertion of A+ in P and Sn, especially in P, contributes to the reduction in capacity of AIBs. Serious sodium metal dendrite growth causes further reduction in the capacity of SIBs, while in PIBs it is the unstable solid electrolyte interphase and sluggish dynamics that lead to capacity decay. Not only the failure mechanism, including structural deterioration, unstable SEI, dendrite growth, and sluggish kinetics, but also the modification strategy and systematic analysis method provide theoretical guidance for the development of other alloy-based anode materials.  相似文献   

16.
近年来锂离子电池安全事故频发对锂离子电池产业带来比较严重的影响,为减少此类事故发生,可采用电池管理系统对锂离子电池进行安全管理,保证其正常运作。管理过程中利用传感器对电池参数进行监测十分必要,光纤传感器具有体积小、抗电磁干扰能力强、可分布式测量等优势,可实现对锂离子电池的精准监测。文章从锂离子电池监测需求出发,简要介绍了三种主流光纤传感原理,并综述了各种用于锂离子电池监测的光纤传感最新研究成果,最后对光纤传感技术在锂离子电池参数监测中的应用做了展望。  相似文献   

17.
Alkali metal – chalcogen batteries (ACBs) have attracted significant attention as next-generation energy storages because of high energy density and reasonable cost as compared to the up-to-date lithium-ion batteries. Nevertheless, their practical applications are harshly inhibited by some drawbacks, such as shuttle effects resulting from dissolved polysulfides and polyselenides, chalcogen volume expansion, and dendrite growth on metal anodes. Functional components, such as chalcogen host, binder, and interlayer, using various polar materials have been introduced to address these issues. Among them, bio-derived materials are regarded as novel eco-friendly alternatives. In this report, the authors focus on the unique physical/chemical/environmental properties of bio-derived materials used in ACBs, including active host materials, polymer binders, separators, and additives. The authors hope that the present report can provide some new insights and directions for future research on high-performance ACBs.  相似文献   

18.
Lithium-ion batteries are widely used as power sources in various portable electronics, hybrid electric vehicles, aeronautic and aerospace engineering, etc. To ensure an uninterruptible power supply, the remaining useful life (RUL) prediction of lithium-ion batteries has attracted extensive attention in recent years. This paper proposed an improved unscented particle filter (IUPF) method for lithium-ion battery RUL prediction based on Markov chain Monte Carlo (MCMC). The method uses the MCMC to solve the problem of sample impoverishment in UPF algorithm. Additionally, the IUPF method is proposed on the basis of UPF, so it can also suppress the particle degradation existing in the standard PF algorithm. In this work, the IUPF method is introduced firstly. Then, the capacity data of lithium-ion batteries are collected and the empirical capacity degradation model is established. The proposed method is used to estimate the RUL of lithium-ion battery. The RUL prediction results demonstrate the effectiveness and advantage.  相似文献   

19.
Prognostics and health management of lithium-ion batteries, especially their remaining useful life (RUL) prediction, has attracted much attention in recent years because accurate battery RUL prediction is beneficial to ensuring high reliability of lithium-ion batteries for providing power sources for many electronic products. In the common state space modeling of battery RUL prediction, noise variances are usually assumed to be fixed. However, noise variances have great influence on state space modeling. If noise variances are too small, it takes long time for initial guess states to approach true states, and thus estimated states and measurements are biased. If noise variances are too large, state space modeling based filtering will suffer divergence. Besides, even though a same type of lithium-ion batteries are investigated, their degradation paths vary quite differently in practice due to unit-to-unit variation, ambient temperature and other working conditions. Consequently, heterogeneity of noise variances should be taken into consideration in state space modeling so as to improve RUL prediction accuracy. More importantly, noise variances should be posteriorly updated by using up-to-date battery capacity degradation measurements. In this paper, an efficient prognostic method for battery RUL prediction is proposed based on state space modeling with heterogeneity of noise variances. 26 lithium-ion batteries degradation data are used to illustrate how the proposed prognostic method works. Some comparisons with other common prognostic methods are conducted to show the superiority of the proposed prognostic method.  相似文献   

20.
As a promising candidate for future demand,fiber-shaped electrochemical energy storage devices,such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry.Carbon nanomaterials,such as carbon nanotube and graphene,have been widely investigated as electrode materials due to their merits of light weight,flexibility and high capacitance.In this review,recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes,including the diversified electrode preparation,functional and intelligent device structure,and large-scale production of fibrous electrodes or devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号