首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO is identified as a potentially attractive n-type oxide thermoelectric material due to its abundance, nontoxicity, and a high degree of stability. However, working with ZnO is challenging due to its high thermal conductivity from its strong ionic bonds and low electrical conductivity due to its low charge concentrations. Here, it is demonstrated that the electrical and thermal transport properties of ZnO can be simultaneously improved via the successful doping of Al and ZnS coating. The ZnS coating in Al-doped ZnO is observed and analyzed through microstructure and spectroscopic studies. The power factor for 1% ZnS-coated Zn0.98Al0.02O is increased to ≈0.75 mW m−1 K−2 at 1073 K, 161% higher than pure ZnO. This enhancement in the power factor can be explained by the aliovalent Al3+ doping and modifications in intrinsic defects, leading to an increased carrier concentration. Interestingly, ZnS coating significantly reduces lattice thermal conductivity to ≈2.31 W m−1 K−1 at 1073 K for 2% ZnS-coated Zn0.98Al0.02O, a 62% decrease over pure ZnO. This large reduction in lattice thermal conductivity can be elucidated based on coherent phonon scattering via Callaway's model. Overall, the figure of merit, zT, increases to 0.2 in 2% ZnS-coated Zn0.98Al0.02O, which is 272% higher than pure ZnO at 1073 K.  相似文献   

2.
Dense point defects can strengthen phonon scattering to reduce the lattice thermal conductivity and induce outstanding thermoelectric performance in GeTe-based materials. However, extra point defects inevitably enlarge carrier scattering and deteriorate carrier mobility. Herein, it is found that the interstitial Cu in GeTe can result in synergistic effects, which include: 1) strengthened phonon scattering, leading to ultralow lattice thermal conductivity of 0.48 W m−1 K−1 at 623 K; 2) weakened carrier scattering, contributing to high carrier mobility of 80 cm2 V−1 s−1 at 300 K; 3) optimized carrier concentration of 1.22 × 1020 cm−3. Correspondingly, a high figure-of-merit of ≈2.3 at 623 K can be obtained in the Ge0.93Ti0.01Bi0.06Te-0.01Cu, which corresponds to a maximum energy conversion efficiency of ≈10% at a temperature difference of 423 K. This study systematically investigates the doping behavior of the interstitial Cu in GeTe-based thermoelectric materials for the first time and demonstrates that the localized interstitial Cu is a new strategy to enhance the thermoelectric performance of GeTe-based thermoelectric materials.  相似文献   

3.
The lattice thermal conductivity (κph) of metals and semimetals is limited by phonon-phonon scattering at high temperatures and by electron-phonon scattering at low temperatures or in some systems with weak phonon-phonon scattering. Following the demonstration of a phonon band engineering approach to achieve an unusually high κph in semiconducting cubic-boron arsenide (c-BAs), recent theories have predicted ultrahigh κph of the semimetal tantalum nitride in the θ-phase (θ-TaN) with hexagonal tungsten carbide (WC) structure due to the combination of a small electron density of states near the Fermi level and a large phonon band gap, which suppress electron-phonon and three-phonon scattering, respectively. Here, measurements on the thermal and electrical transport properties of polycrystalline θ-TaN converted from the ε phase via high-pressure synthesis are reported. The measured thermal conductivity of the θ-TaN samples shows weak temperature dependence above 200 K and reaches up to 90 Wm−1K−1, one order of magnitude higher than values reported for polycrystalline ε-TaN and δ-TaN thin films. These results agree with theoretical calculations that account for phonon scattering by 100 nm-level grains and suggest κph increase above the 249 Wm−1 K−1 value predicted for single-crystal WC when the grain size of θ-TaN is increased above 400 nm.  相似文献   

4.
Structural mosaic of rare-earth tri-tellurides (RTe3) inlaid with non-classical structural motifs like the 2D−polytelluride square nets has attracted immense attention owing to their enigmatic chemical bonding, unconventional structure, and harboring charge density wave (CDW) ground states. GdTe3, an archetypal RTe3, is a natural heterostructure of charged and van der Waals (vdW) layers, formed by intercalating vdW gap separated 2D square telluride nets [(Te2)]n between the charged double corrugated slabs of n[GdTe]+. Here, we have investigated the evolution of structural distortions along with the electrical and thermal transport properties of GdTe3 across its CDW transition through X-ray pair distribution function analysis, thermal conductivity measurements, Raman spectroscopy and first principles theoretical calculations. The results reveal that the unusual structure of GdTe3 engenders a large anisotropic lattice thermal conductivity by concomitantly hampering the phonon propagation along parallel to the spark plasma sintering (SPS) pressing direction via chemical bonding hierarchy while facilitating phonon propagation along perpendicular to the SPS pressing direction through the metallic Te sheets and phason channel. The low lattice thermal conductivity is attributed to the strong vibrational anharmonicity caused by CDW-induced concerted local lattice distortions of both Gd–Te slab and Te square net, and the robust electron–phonon coupling.  相似文献   

5.
Balancing the contradictory relationship between thermoelectric parameters, such as effective mass and carrier mobility, is a challenge to optimize thermoelectric performance. Herein, the exceptional thermoelectric performance is realized in GeTe through collaboratively optimizing the carrier and phonon transport via stepwise alloying Pb and CuSbSe2. The formation energy of Ge vacancy is efficiently bolstered by alloying Pb, which reduces carrier density and carrier scattering to maintain superior carrier mobility in GeTe. Additionally, CuSbSe2, acting as an n-type dopant, further modulates carrier density and validly equilibrates carrier mobility and effective mass. Accordingly, the promising power factor of 45 µW cm−1 K−2 is achieved at 723 K. Meanwhile, point defects are found to significantly suppress phonons transport to descend lattice thermal conductivity by Pb and CuSbSe2 alloying, which barely impacts the carrier mobility. A combination with superior carrier mobility and lower lattice thermal conductivity, a maximum ZT of 2.2 is attained in Ge0.925Pb0.075Cu0.005Sb0.005TeSe0.01, which corresponds to a 100% promotion compared with that of intrinsic GeTe. This study provides a new indicator for optimizing carrier and phonon transport properties by balancing interrelated thermoelectric parameters.  相似文献   

6.
A unique strain-mediated lattice rotation strategy is introduced via nanocompositing to upsurge the optimized limits in the composition-to-structural pathway on rationally engineering the efficient thermoelectric material. In this study, a special lattice rotation via strain engineering is realized to optimize the desired electronic and chemical environment for enhancing thermoelectric properties in n-type Bi2S2Se. This approach results in a unique transport phenomenon to assist high-energy electrons in transferring through the optimized transport channels, and appropriate structure disparity to significantly localize phonons. As a result, Sb over Cl doping in Bi2S2Se gently reduces Eg and introduces defect states in bandgap with shifting down the Fermi level, thus causing increase in carrier concentration, which contributes to a higher power factor of ≈7.18 µW cm−1 K−2 (at T = 773 K). Besides, a lower thermal conductivity of ≈0.49 W m−1 K−1 is driven through lattice strain and defect engineering. Consequently, an ultra-high ZTmax = 1.13 (at T = 773 K) and a high ZTave = 0.54 (323 K-773 K) are realized. This study not only leads to an extraordinary thermoelectric performance but also reveals a unique paradigm for electron transportation and phonon localization via lattice strain engineering.  相似文献   

7.
Forming solid solutions has long been considered an effective approach for good thermoelectrics because the lattice thermal conductivities are lower than those of the constituent compounds due to phonon scattering from disordered atoms. However, this effect could also be compensated by a reduction in carrier mobility due to electron scattering from the same disorder. Using a detailed study of n‐type (PbTe)1–x (PbSe)x solid solution (0 ≤ x ≤ 1) as a function of composition, temperature, and doping level, quantitative modeling of transport properties reveals the important parameters characterizing these effects. Based on this analysis, a general criterion for the improvement of zT due to atomic disorder in solid solutions is derived and can be applied to several thermoelectric solid solutions, allowing a convenient prediction of whether better thermoelectric performance could be achieved in a given solid solution. Alloying is shown to be most effective at low temperatures and in materials that are unfavorable for thermoelectrics in their unalloyed forms: high lattice thermal conductivity (stiff materials with low Grüneisen parameters) and high deformation potential.  相似文献   

8.
Thermoelectrics are being rapidly developed for waste heat recovery applications, particularly in automobiles, to reduce carbon emissions. PbTe‐based materials with small (<20 nm) nanoscale features have been previously shown to have high thermoelectric figure‐of‐merit, zT, largely arising from low lattice thermal conductivity particularly at low temperatures. Separating the various phonon scattering mechanisms and the electronic contribution to the thermal conductivity is a serious challenge to understanding, and further optimizing, these nanocomposites. Here we show that relatively large nanometer‐scale (50–200 nm) Ag2Te precipitates in PbTe can be controlled according to the equilibrium phase diagram and these materials show intrinsic semiconductor behavior with high electrical resistivity, enabling direct measurement of the phonon thermal conductivity. This study provides direct evidence that even large nanometer‐scale microstructures reduce thermal conductivity below that of a macro‐scale composite of saturated alloys with Kapitza‐type interfacial thermal resistance at the same overall composition. Carrier concentration control is achieved with lanthanum doping, enabling independent control of the electronic properties and microstructure. These materials exhibit lattice thermal conductivity which approaches the theoretical minimum above ~650 K, even lower than that found with small nanoparticles. Optimally La‐doped n‐type PbTe‐Ag2Te nanocomposites exhibit zT > 1.5 at 775 K.  相似文献   

9.
The thermoelectric figure-of-merit (zT) of p-type MNiSn (M = Ti, Zr, or Hf) half-Heusler compounds is lower than their n-type counterparts due to the presence of a donor in-gap state caused by Ni occupying tetrahedral interstitials. While ZrNiSn and TiNiSn, have been extensively studied, HfNiSn remains unexplored. Herein, this study reports an improved thermoelectric property in p-type HfNi1−xCoxSn. By doping 5 at% Co at the Ni sites, the Seebeck coefficient becomes reaching a peak value exceeding 200 µV K−1 that breaks the record of previous reports. A maximum power factor of ≈2.2 mW m−1 K−2 at 973 K is achieved by optimizing the carrier concentration. The enhanced p-type transport is ascribed to the reduced content of Ni defects, supported by first principle calculations and diffraction pattern refinement. Concomitantly, Co doping also softens the lattice and scatters phonons, resulting in a minimum lattice thermal conductivity of ≈1.8 W m−1 K−1. This leads to a peak zT of 0.55 at 973 K is realized, surpassing the best performing p-type MNiSn by 100%. This approach offers a new method to manipulate the intrinsic atomic disorder in half-Heusler materials, facilitating further optimization of their electronic and thermal properties.  相似文献   

10.
Heterogeneous composites consisting of Bi6Cu2Se3.6Cl0.4O6 and Bi2O2Se are prepared according to the concept of modulation doping. With prominently increased carrier mobility and almost unchanged effective mass, the electrical transport properties are considerably optimized resulting in a peak power factor ≈1.8 µW cm−1 K−2 at 873 K, although the carrier concentration is slightly deteriorated. Meanwhile, the lattice thermal conductivity is lowered to ≈0.62 W m−1 K−1 due to the introduction of the second phase. The modified Self-consistent Effective Medium Theory is utilized to explain the deeper mechanism of modulation doping. The enhancement of apparent carrier mobility is derived from the highly active phase interfaces as fast carrier transport channels, while the reduced apparent thermal conductivity is ascribed to the existence of thermal resistance at the phase interfaces. Ultimately, an optimized ZT ≈0.23 is obtained at 873 K in Bi6Cu2Se3.6Cl0.4O6 + 13% Bi2O2Se. This research demonstrates the effectiveness of modulation doping for optimizing thermoelectric properties once again, and provides the direct microstructure observation and consistent theoretical model calculation to emphasize the role of interface effects in modulation doping, which should be probably applicable to other thermoelectrics.  相似文献   

11.
Thermal conductivity, which measures the ease at which heat passes through a crystalline solid, is controlled by the nature of the chemical bonding and periodicity in the solid. This necessitates an in-depth understanding of the crystal structure and chemical bonding to tailor materials with notable lattice thermal conductivity (κL). Herein, the nature of chemical bonding and its influence on the thermal transport properties (2–523 K) of all-inorganic halide perovskite Cs3Bi2I9 are studied. The κL exhibits an ultralow value of ≈0.20  W m−1K−1 in 30–523 K temperature range. The antibonding states just below the Fermi level in the electronic structure arising from the interaction between bismuth 6s and iodine 5p orbitals, weakens the bond and causes soft elasticity in Cs3Bi2I9. First-principles density functional theory (DFT) calculations reveal highly localized soft optical phonon modes originating from Cs-rattling and dynamic double octahedral distortion of 0D [Bi2I9]3− in Cs3Bi2I9. These low energy nearly flat optical phonons strongly interact with transverse acoustic modes creating an ultrashort phonon lifetime of ≈1 ps. While the presence of extended antibonding states gives rise to soft anharmonic lattice; Cs rattling provides sharp localized optical phonon modes, which altogether result in strong lattice anharmonicity and ultralow κL.  相似文献   

12.
Many efforts are recently devoted on improving thermoelectric SnTe as an environment—friendly alternative to conventional PbTe and successful approaches include valence band convergence, nanostructuring, and substantial/interstitial defects. Among these strategies, alloying SnTe with MnTe enables the most effective reduction in the valence band offset (between L and Σ) for a convergence due to its high solubility of ≈15%, yet there is no indication that the solubility of MnTe is high enough for fully optimizing the valence band structure and thus for maximizing the electronic performance. Here, a strategy is shown to increase the MnTe solubility up to ≈25% by alloying with 5% GeTe, which successfully locates the composition (20% MnTe) to optimize the valence band structure by converging a more degenerated Λ (as compared with band L) and Σ valence bands. Through a further alloying with Cu2Te, the resultant Cu‐interstitial defects enable a sufficient reduction in lattice thermal conductivity to its amorphous limit (0.4 W m−1 K−1). These electronic and thermal effects successfully realize a record‐high thermoelectric figure of merit, zT of 1.8, strongly competing with that of PbTe. This work demonstrates the validity of band manipulation and interstitial defects for realizing extraordinary thermoelectric performance in SnTe.  相似文献   

13.
In this work, a record high thermoelectric figure-of-merit ZT of 1.6 ± 0.2 at 873 K in p-type polycrystalline Bi0.94Pb0.06CuSe1.01O0.99 by a synergy of rational band manipulation and novel nanostructural design is reported. First-principles density functional theory calculation results indicate that the density of state at the Fermi level that crosses the valence band can be significantly reduced and the measured optical bandgap can be enlarged from 0.70 to 0.74 eV by simply replacing 1% O with 1% Se, both indicating a potentially reduced carrier concentration and in turn, an improved carrier mobility and a boosted power factor up to 9.0 µW cm−1 K−2. Meanwhile, comprehensive characterizations reveal that under Se-rich condition, Cu2Se secondary microphases and significant lattice distortions triggered by Pb-doping and Se-substitution can be simultaneously achieved, contributing to a reduced lattice thermal conductivity of 0.4 W m−1 K−1. Furthermore, a unique shear exfoliation technique enables an effective grain refinement with higher anisotropy of the polycrystalline pellet, leading to a further improved power factor up to 10.9 µW cm−1 K−2 and a further reduced lattice thermal conductivity of 0.30 W m−1 K−1, which gives rise to record high ZT.  相似文献   

14.
It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of such defects on phonon transport, to guarantee the successful integration of MoS2 into the solid‐state devices. A comprehensive joint experiment‐theory investigation to explore the effect of lattice defects on the thermal transport of the suspended MoS2 monolayer grown by CVD is presented. The measured room temperature thermal conductivity values are 30 ± 3.3 and 35.5 ± 3 W m?1 K?1 for two samples, which are more than two times smaller than that of their exfoliated counterpart. High‐resolution transmission electron microscopy shows that these CVD‐grown samples are polycrystalline in nature with low angle grain boundaries, which is primarily responsible for their reduced thermal conductivity. Higher degree of polycrystallinity and aging effects also result in smoother temperature dependency of thermal conductivity (κ) at temperatures below 100 K. First‐principles lattice dynamics simulations are carried out to understand the role of defects such as isotopes, vacancies, and grain boundaries on the phonon scattering rates of our CVD‐grown samples.  相似文献   

15.
Filled skutterudites are prospective intermediate temperature materials for␣thermoelectric power generation. CoSb3-based n-type filled skutterudites have good electrical transport properties with power factor values over 40 μW/cm K2 at elevated temperatures. Filling multiple fillers into the crystallographic voids of skutterudites would help scatter a broad range of lattice phonons, thus resulting in lower lattice thermal conductivity values. We report the thermoelectric properties of n-type multiple-filled skutterudites between 5 K and 800 K. The combination of different fillers inside the voids of the skutterudite structure shows enhanced phonon scattering, and consequently a strong suppression of the lattice thermal conductivity. Very good power factor values are achieved in multiple-filled skutterudite compared with single-element-filled materials. The dimensionless thermoelectric figure of merit for n-type filled skutterudites is improved through multiple-filling in a wide temperature range.  相似文献   

16.
The heat transport mechanisms in superlattices are identified from the cross‐plane thermal conductivity Λ of (AlN)x–(GaN)y superlattices measured by time‐domain thermoreflectance. For (AlN)4.1 nm–(GaN)55 nm superlattices grown under different conditions, Λ varies by a factor of two; this is attributed to differences in the roughness of the AlN/GaN interfaces. Under the growth condition that gives the lowest Λ, Λ of (AlN)4 nm–(GaN)y superlattices decreases monotonically as y decreases, Λ = 6.35 W m−1 K−1 at y = 2.2 nm, 35 times smaller than Λ of bulk GaN. For long‐period superlattices (y > 40 nm), the mean thermal conductance G of AlN/GaN interfaces is independent of y, G ≈ 620 MW m−2 K−1. For y < 40 nm, the apparent value of G increases with decreasing y, reaching G ≈ 2 GW m−2 K−1 at y < 3 nm. MeV ion bombardment is used to help determine which phonons are responsible for heat transport in short period superlattices. The thermal conductivity of an (AlN)4.1 nm–(GaN)4.9 nm superlattice irradiated by 2.3 MeV Ar ions to a dose of 2 × 1014 ions cm−2 is reduced by <35%, suggesting that heat transport in these short‐period superlattices is dominated by long‐wavelength acoustic phonons. Calculations using a Debye‐Callaway model and the assumption of a boundary scattering rate that varies with phonon‐wavelength successfully capture the temperature, period, and ion‐dose dependence of Λ.  相似文献   

17.
The good co-existence of midgap state and valence band degeneracy is realized in Bi-alloyed GeTe through the In-Cd codoping to play different but complementary roles in the valence band structure modification. In doping induces midgap state and results in a considerably improved Seebeck coefficient near room temperature, while Cd doping significantly increases the Seebeck coefficient in the mid-high temperature region by promoting the valence band convergence. The synergistic effects obviously increase the density of state effective mass from 1.39 to 2.65 m0, and the corresponding carrier mobility still reaches 34.3 cm2 V−1 s−1 at room temperature. Moreover, the Bi-In-Cd co-alloying introduces various phonon scattering centers including nanoprecipitates and strain field fluctuations and suppresses the lattice thermal conductivity to a rather low value of 0.56 W m−1 K−1 at 600 K. As a result, the Ge0.89Bi0.06In0.01Cd0.04Te sample obtains excellent thermoelectric properties of zTmax ≈2.12 at 650 K and zTavg ≈1.43 between 300 and 773 K. This study illustrates that the thermoelectric performance of GeTe can be optimized in a wide temperature range through the synergy of midgap state and valence band convergence.  相似文献   

18.
A deficiency of Ga in wide band‐gap AgGa1‐xTe2 semiconductors (1.2 eV) can be used to optimize the electrical transport properties and reduce the thermal conductivity to achieve ZT > 1 at 873 K. First‐principles density functional theory calculations and a Boson peak observed in the low temperature heat capacity data indicate the presence of strong coupling between optical phonons with low frequency and heat carrying acoustical phonons, resulting in a depressed maximum of Debye frequency in the first Brillouin zone and low phonon velocities. Moreover, the Ag? Te bond lengths and Te? Ag? Te bond angles increase with rising temperature, leading to a significant distortion of the [AgTe4]7? tetrahedra, but an almost unmodified [GaTe4]5? tetrahedra. This behavior results in lattice expansion in the ab‐plane and contraction along the c‐axis, corresponding to the positive and negative Gruneisen parameters in the phonon spectral calculations. This effect gives rise to the large anharmonic behavior of the lattice. These factors together with the low frequency vibrations of Ag and Te atoms in the structure lead to an ultralow thermal conductivity of 0.18 W m?1 K?1 at 873 K.  相似文献   

19.
Mg3Sb2-based intermetallic compounds with exceptionally high thermoelectric performance exhibit unconventional n-type dopability and anomalously low thermal conductivity, attracting much attention to the underlying mechanisms. To date, investigations have been limited to first-principle calculations and thermodynamic analysis of defect formation, and detailed experimental analysis on crystal structure and phonon modes has not been achieved. Here, a synchrotron X-ray diffraction study clarifies that, against a previous view of a simple crystal structure with a small unit cell, Mg3Sb2 is inherently a heavily disordered material with Frenkel defects, charge-neutral defect complexes of cation vacancies and interstitials. Ionic charge neutrality preserved in Mg3Sb2 is responsible for exotic n-type dopability, which is unachievable for other Zintl phase materials. The thermal conductivity of Mg3Sb2 exhibits deviation from the standard T−1 temperature dependency with strongly limited phonon transport due to a strain field. Inelastic X-ray scattering measurement reveals enhanced phonon scattering induced by disorder. The results will draw renewed attention to crystal defects and disorder as means to explore new high-performance thermoelectric materials.  相似文献   

20.
To obtain high-performance PbS-based thermoelectric materials, this study introduces Cu with different contrasting roles in p-type PbS, which can effectively decrease the lattice thermal conductivity and simultaneously optimize the electrical transport properties. Experimental results illustrate that Cu substitutions and Cu interstitials can improve carrier mobility through lowering effective mass (m*) and carrier concentration (nH) in a low temperature range (300–450 K), and further optimize temperature-dependent nH in a high temperature range (450–823 K). Both decreased m* and nH shift the peak power factor to low temperature range, leading to an ultrahigh power factor ≈23 µW cm−1 K−2 at 423 K for Pb0.99Cu0.01S-0.01Cu. Additionally, the special dynamic-doping behaviors of Cu can continuously promote nH to approach the temperature-dependent relationship of (nH, opt) ≈ (m*T)1.5, which brings about an eminent average power factor (PFave) ≈ 18 µW cm−1 K−2 among 300–823 K in Pb0.99Cu0.01S-0.01Cu. Furthermore, the microstructure characterizations unclose that the atomic and nanoscale Cu-containing defects can effectively intensify the phonon scattering and suppress the lattice thermal conductivity. Consequently, both high ZT (≈0.2 at 300 K) and peak ZT (≈1.2 at 773 K) result in a record-high average ZT (ZTave) of ≈0.79 at 300–823 K for Pb0.99Cu0.01S-0.01Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号