首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A miniaturized Vivaldi antenna is presented in the paper. On the basis of original antenna, the miniaturized Vivaldi antenna applies parasitic patch and lumped resistor to improve impedance characteristics. The proposed load can expand the lower operating frequency to 1.96 GHz without changing antenna dimensions. The size of antenna is set as 43 × 40 mm2. This size is about 0.28λL × 0.26λL, where λL is the free space wavelength at 1.96 GHz. The loaded Vivaldi antenna is fabricated and measured. The simulated and measured results clarify the viability and effectiveness of the proposed design. The measured impedance bandwidth (VSWR  2) is from 2 GHz to more than 18 GHz. In addition, the measured radiation patterns and a peak gain between −1 and 9 dB can be obtained in the band of 2–18 GHz.  相似文献   

2.
A novel circularly polarized microstrip antenna using triple proximity-fed method is proposed in this paper. The circular polarization radiation is produced by adjusting 120° phase shift between the feeds. In the feeding network, a three-way circular-sector power divider is adopted to distribute the current equally to each feed. A method of moments is employed for optimizing the design and achieving a good circular polarization at the center frequency of 1.28 GHz. The measured result shows that 3-dB axial ratio bandwidth and maximum gain are about 0.68% (8.7 MHz) and 7.11 dBic, respectively, which are consistent with the simulated values of 0.70% (9.0 MHz) and 7.21 dBic. The narrow bandwidth and reasonable gain indicate that this antenna is promising for various applications in L-band.  相似文献   

3.
In this paper, a novel polarization and frequency reconfigurable microstrip patch antenna which can switch between vertical and horizontal linear polarizations, left hand and right hand circular polarizations at two WLAN frequencies is presented. The orthogonal linear polarizations are achieved by a square microstrip patch antenna fed by two ports on adjacent sides. By introducing corner truncated perturbation on opposite corners of right diagonal of a square patch, orthogonal circular polarizations are achieved. By controlling the bias voltage of two PIN diodes loaded at perturbed corners, a single structure can achieve quad polarization states. Furthermore, by superimposing a square ring slot into the corner truncated square patch and incorporating four PIN diodes into the square ring slot, quad polarization are achieved at dual frequencies. Simulated and measured results indicate that the antenna can achieve quad polarization at two WLAN bands (5.15–5.35 GHz) and (5.75–5.85 GHz). The proposed antenna is simple, has low profile and can be scaled easily for other frequencies.  相似文献   

4.
This paper presents a compact semi circular monopole antenna loaded with Complementary Split Ring Resonator (CSRR) and two C-shaped slots is proposed for Global System for Mobile Communication (GSM), Worldwide Interoperability for Microwave Access (WiMAX) and C-band applications. The size of the proposed antenna is 20 × 20 × 0.5 mm3. The resonance frequency of WiMAX (3.73 GHz) is achieved by introducing CSRR slots on the ground plane. To realize multiband characteristics for GSM (1.77 GHz), WiMAX (2.6 GHz) and C-band (4.15 GHz), two C-shaped slots of quarter wavelength are introduced in radiating element. The extraction procedure of negative permittivity for the proposed CSRR is discussed in detail. The proposed antenna is fabricated and measured. Simulated and measured results are in good agreement. Omni directional radiation pattern is obtained in H-plane and bi directional radiation pattern is obtained in E-plane. Parametric study of CSRR and C-shaped slot are examined to obtain best results. The proposed antenna has significant advantages, including low profile, miniaturization ability, and good impedance matching.  相似文献   

5.
In this paper, a novel single feed frequency and polarization reconfigurable microstrip patch antenna is presented. This antenna mainly comprises of a corner truncated square patch with a rectangular ring slot, eight PIN diodes and six conductive pads. Four PIN diodes are placed symmetrically in the rectangular ring slot to bridge the gap and to switch the frequency between WLAN bands resonating at 5.2G Hz and 5.8G Hz. Four PIN diodes connect the corner truncated square patch to parasitic triangular conductors. PIN diodes are used to switch the polarization between linear, right hand circular and left hand circular at each frequency. When compared to conventional patch, the proposed design provides a size reduction of 12% at 5.2G Hz, and 30% at 5.8G Hz. The simulated reflection coefficient and radiation patterns are presented and compared with the experimental data. This antenna finds applications for modern wireless communication system.  相似文献   

6.
In the recent years, the strong demand for high performance, low cost and high gain antennas for telecommunication, surveillance, and imaging applications has rapidly grown at microwave and higher frequencies. High speed wireless links require modular, compact size and high directivity with low cross polarization antennas. To demonstrate the proposed concepts and design features, in this paper, a substrate integrated waveguide (SIW) feeding technique has been created having well behaved gain and suitable −10 dB bandwidth from 23.8 GHz to 25.7 GHz (roughly 2 GHz bandwidth), while the impedance bandwidth for VSWR < 2.5 is nearly 3 GHz. The simulated antenna attains 12.5 ± 1 dB gain over majority of K band with an occupied size of 82 mm × 40 mm × 2.54 mm and has roughly 95% radiation efficiency. The proposed antenna is an excellent candidate for integrated low cost K band and even higher frequency systems. The simulations are done by two full wave packages i.e. ANSYS HFSS and CST MWS that associated with finite element method (FEM) and finite difference time domain (FDTD), respectively. The results show good agreements between these two methods.  相似文献   

7.
This paper presents a compact active integrated antenna (AIA) comprising of class-A power amplifier (PA) and stepped impedance planar inverted-F antenna (PIFA). In the proposed design, a common ground is used for both PA and PIFA, resulting a compact antenna of size 0.14λ0 × 0.11λ0 × 0.01λ00 is free space wavelength at 0.85 GHz). Moreover, it is demonstrated that by using the stepped impedance radiator the operating frequency of the active PIFA is shifted down from its natural resonant frequency of 1.36 GHz to 0.85 GHz, offering an extensive size reduction of 80%. This active integration increases the passive antenna gain through the effective loading of the antenna to the power amplifier. The measured result indicates that the active and passive antennas achieved the gain of 15.7 dB and 3.81 dBi, respectively after the integration. In addition, the maximum SAR value of antenna is found to be 0.64 W/kg.  相似文献   

8.
In this paper a second iteration Sierpinski carpet fractal shape UWB antenna with hexagonal boundary is presented. The antenna covers the frequency band from 3 GHz to 12 GHz (VSWR  2). The proposed antenna has the capability to reject 5.15–5.825 GHz band assigned for IEEE802.11a and HIPERLAN/2 which is achieved by embedding a ‘Y’ shaped slot in the radiator that extends to the central conductor of the CPW feed as well. A fabricated prototype is developed where the simulation and experimental results are in good agreement. Measured peak antenna gain varies from 1.25 dBi to 6 dBi within the band. The proposed antenna has a compact size of 33 mm × 32 mm that includes the substrate around the radiating element. Time domain characteristic reveal that the antenna is non-dispersive with a variation of measured group delay within 0.5 ns over the entire band.  相似文献   

9.
In this paper, a novel quasi-lumped element resonator antenna is presented. The proposed antenna consists of the interdigital capacitor in parallel with a straight line inductor and is fabricated on Duroid RC4003C circuit board. The entire arrangement was fed by a coaxial feed at a frequency of 5.8 GHz. The size, bandwidth and radiation patterns were studied. The proposed antenna exhibits better impedance bandwidth and significant size reduction in comparison with similar results obtained from the conventional microstrip patch antenna with similar feeding technique and resonant frequency. The size of the proposed antenna structure is 5.8 × 5.6 mm2 and experimental results are shown to be in good agreement with the design simulation.  相似文献   

10.
This paper presents compact size 4 × 4 cm2 MIMO antenna for UWB applications. The proposed antenna consists of four symmetric circular elements printed on low cost FR4 substrate with partial slotted ground plane. The two sides of the substrate are symmetric and each side is consisting of two radiators with the partial ground planes associated to the two other elements mounted on the other side. The two elements of the front side are orthogonal to the two other elements of the back side in order to increase the isolation between elements. For further reduction in the mutual coupling between elements, decoupling structures are presented in the top and bottom layers of the substrate. The simulated and measured results are investigated to study the effectiveness of the MIMO-UWB antenna. The results demonstrate the satisfactory performance of MIMO-UWB antenna, which has a return loss less than −10 dB from approximately 3.1 GHz to more than 11 GHz with an insertion loss lower than −20 dB through the achieved frequency band, and a correlation less than 0.002. Moreover, the proposed MIMO model exhibits a nearly omni-directional radiation pattern with almost constant gain of average value 3.28 dBi.  相似文献   

11.
A novel implantable coplanar waveguide (CPW) fed crossed bowtie antenna is proposed for short-range biomedical applications. The antenna is designed to resonate at 2.45 GHz, one of the industrial-scientific-medical (ISM) bands. It is investigated by use of the method of moments design equations and its simulation software (IE3D version 15). The size of the antenna is 371.8 mm3 (26 mm × 22 mm × 0.65 mm). The simulated and analyzed return losses are −23 and −25 dB at the resonant frequency of 2.45 GHz. We have analyzed some more performances of the proposed antenna and the results show that the proposed antenna is a perfect candidate for implantation. The proposed antenna has substantial merits like low profile, miniaturization, lower return loss and better impedance matching with high gain over other implanted antennas.  相似文献   

12.
A miniaturized multiband monopole antenna based on rectangular-shaped Complementary Split Ring Resonators (CSRRs) with offset-fed microstrip line is proposed for Global System for Mobile Communication (GSM) and Wireless Local Area Network (WLAN) applications. The proposed antenna is fabricated on a FR-4 substrate having a dielectric constant (ɛr) of 4.4 within a small size of 19.18 × 22.64 × 1.6 mm3. CSRRs in the monopole antenna create a multiband characteristics and bandwidth improvement, which is analyzed by use of the precise quasi-static design equations and electromagnetic simulation software (HFSS version 13). By selecting a proper offset-fed microstrip line, it is capable to achieve 50 Ω characteristic impedance and good impedance matching. The parameter extraction procedure of the metamaterial property of the CSRRs is enlightened in detail, by which the negative permittivity existence and the new resonance frequencies are verified. Simulated and measured result coincides with each other. The measured H-Plane (azimuthal plane) exhibits omnidirectional radiation pattern and E-plane (elevation plane) shows a dipole like bidirectional radiation pattern. The proposed antenna has adequate advantages, including simple design, small size, lower return loss and capable of multiband operations.  相似文献   

13.
In this letter, a kind of metamaterial superstrate based on rectangular metallic grids is presented to enhance the directivity of patch antenna at two frequency bands for two orthogonal polarizations. According to the periodic boundary condition, the influences of its important geometry parameters are investigated in detail by simulating its unit cell. It is found that the transmission peak frequency is intimately related to the size of rectangular metallic grid. Then, a dual band dual polarization patch antenna with metamaterial is studied and compared with conventional patch antenna. It is demonstrated that by introducing the proposed metamaterial superstrate, the gain of the patch antenna is improved by 9.5 dB at 14.1 GHz for x polarization and 12 dB at 15.4 GHz for y polarization, respectively.  相似文献   

14.
This paper presents the design of a modified ground apollonian ultra wideband (UWB) fractal antenna. The printed fractal antenna has been designed on a substrate with dielectric constant ?r = 4.3 and thickness h = 1.53 mm. The antenna has been fabricated with optimized dimension and tested. The experimental result of this antenna exhibits UWB characteristics from frequency range 3 GHz to 18 GHz. This corresponds to 142.86% impedance bandwidth with center frequency of 10.5 GHz. The experimental radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The effect of various design parameters on UWB characteristics have also been analyzed using a 3D electromagnetic simulator based on FEM method. The simulated and experimental results are in good agreement. The backscattering RCS of this UWB fractal antenna is better than ?31 dB throughout the FCC band (3.1 GHz to 10.6 GHz). The proposed coplanar waveguide feed appollian fractal antenna can be easily integrated with radio-frequency/microwave circuitry with low-manufacturing cost and useful for UWB applications.  相似文献   

15.
A miniaturized couple-line-fed planar ultra-wideband (UWB) antenna is proposed, which has a dual band-notched characteristic as well as two integrated monopoles. Narrowband notches are generated at frequencies of 3.5 GHz and 5.5 GHz using independently controlled bent resonators, whereas the monopoles are designed for radiation at 900 MHz and 2.4 GHz. The proposed design is simulated with full wave solvers and verified with measurements. A good agreement is observed between the simulations and measurements for the antenna's return loss, gain and radiation pattern performances.  相似文献   

16.
An antenna design with four band rejection characteristics for UWB application is demonstrated. The proposed unique UWB antenna has shape of an embedded ellipse at top of trapezoidal patch (named as ellipzoidal), 50 Ω impedance microstrip line feed and a truncated beveled ground plane. To realize four band stop characteristics, three inverted U-shaped and a single I-shaped slots each of half guided wavelength are utilized on radiating element. The fabricated antenna has dimensions of 27 mm × 36 mm × 1.6 mm. This four band notched ellipzoidal UWB antenna has measured frequency bandwidth 2.8–14 GHz for magnitude of S11 < −10 dB level. The measured ellipzoidal antenna exhibits four band rejection characteristics for magnitude of S11 > −10 dB at 3.55 GHz for WiMAX band (3.26–3.9 GHz), 4.55 GHz for ARN band (4.35–5.05 GHz), 5.7 GHz for WLAN band (5.5–6.65 GHz) and 8.8 GHz for ITU-8 band (7.95–9.35 GHz). The proposed ellipzoidal UWB antenna maintains omnidirectional radiation pattern, gain, linear phase response, <1 ns group delay, and transfer function in the whole UWB operating bandwidth except at notched frequency bands.  相似文献   

17.
This paper demonstrates the design of a triple band notched ultrawideband circular microstrip patch antenna loaded with Complementary Split RingResonator (CSRR) and S-shaped slot in microstrip feed line. Complementary Split Ring Resonator slot and S-shaped slot are used to produce band notched characteristics for WiMAX band (3.30–3.60 GHz) and WLAN band (5.10–5.80 GHz) respectively. The downlink frequency band (7.25–7.75 GHz) of X-band for satellite communication is notched using Symmetrical Split Ring Resonator Pair (SSRRP) as electromagnetic coupling element near microstrip feed line which produces band stop characteristics. Measured results of fabricated antenna prototype are compared with simulated results and found in correspondence. The VSWR and vector current plots show evidence of the significant suppression in the desired frequency bands.  相似文献   

18.
We have described a compact antenna based on fractal and metamaterial loads techniques. The microstrip patch antenna is assumed as a basic antenna and then the effect of fractal structures is implemented. The fractal patch is considered as a right-handed element and then by adding a left-handed element, the antenna miniaturization is achieved by using the metamaterial loads technique. The equivalent circuit is also used to describe the element effect on miniaturization and parametric models clarify them. The proposed antenna is modified for wireless applications and experimental results confirm our simulation results. In addition, we show that the proposed antenna is suitable for reconfigurable. By joining the unit cells together with various arrangements and changing the effective length, the various inductances can be obtained. Finally, by adding reconfigurable characteristic to the proposed antenna, the gain and radiation pattern can be controlled as shows in this paper. The patch antenna has low bandwidth and gain and so we have developed the patch antenna with defected ground to improve the bandwidth and the Frequency Selective Surface (FSS) is used to achieve higher gain and bandwidth. The final antenna is covering 2.4, 3.5 and 5.5 GHz with higher gain than the patch antenna.  相似文献   

19.
A compact and low-profile patch antenna with a simple structure is presented for the wireless local-area network (WLAN) and the wireless access in the vehicular environment (WAVE) applications. The proposed antenna with an overall size of only 23 mm × 25 mm is fed by a coplanar waveguide (CPW), and yields 10-dB impedance bandwidths of about 250 MHz centered at 2.44 GHz and of about 22% ranging from 5.13 to 6.38 GHz suitable for the WLAN 2.4/5.2/5.8 GHz and the WAVE 5.9 GHz (IEEE 802.11p) applications. Also, good dipole-like patterns and high average antenna gain of ≥2.3 dBi over the operating bands have been obtained. In this design, resonance can be effectively controlled by simply tuning the shaped slots on the patch. Mechanism of mode excitations and effect of the added slot's length on resonance for the proposed antenna are examined and discussed in detail. The experimental results have validated the proposed design as useful for modern mobile communication.  相似文献   

20.
A compact, low profile circular fractal patch antenna with low latency, low cost, high speed and multiband is presented. With the help of CST Microwave Studio Suite TM the proposed structure has been designed and analyzed. The simulated results are fixed experimentally. The suggested antenna has dimension of 32 × 36 mm2 (W × L) and operating from 2.93 GHz–9.53 GHz with VSWR  2. The aerial is assembled on FR-4 (εr = 4.4) substrate with a thickness of substrate 1.25 mm. Detailed parametric studies of the antennas have been carried out. This microstrip fed antenna is suitable for ultra wideband (UWB), S, C and part of the X band applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号