首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Thermal stability is a critical criterion for assessing the long-term stability of perovskite solar cells (PSCs). Here, it is shown that un-encapsulated co-evaporated MAPbI3 (TE_MAPbI3) PSCs demonstrate remarkable thermal stability even in an n-i-p structure that employs Spiro-OMeTAD as hole transport material (HTM). TE_MAPbI3 PSCs maintain over ≈95% and ≈80% of their initial power conversion efficiency (PCE) after 1000 and 3600 h respectively under continuous thermal aging at 85 °C. TE_MAPbI3 PSCs demonstrate remarkable structural robustness, absence of pinholes, or significant variation in grain sizes, and intact interfaces with the HTM, upon prolonged thermal aging. Here, the main factors driving TE_MAPbI3 stability are assessed. It is demonstrated that the excellent TE_MAPbI3 thermal stability is related to the perovskite growth process leading to a compact and almost strain-stress-free film. On the other hand, un-encapsulated PSCs with the same architecture, but incorporating solution-processed MAPbI3 or Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 as active layers, show a complete PCE degradation after 500 h under the same thermal aging condition. These results highlight that the control of the perovskite growth process can substantially enhance the PSCs thermal stability, besides the chemical composition. The TE_MAPbI3 impressive long-term thermal stability features the potential for field-operating conditions.  相似文献   

2.
Formamidinium lead triiodide (FAPbI3) with an ideal bandgap and good thermal stability has received wide attention and achieved a record efficiency of 26% in n–i–p (regular) perovskite solar cells (PSCs). However, imperfect FAPbI3 formation on the typical hole transport layer (HTL), high interfacial trap-state density, and unfavorable energy alignment between the HTL and FAPbI3 result in the inferior photovoltaic performance of p–i–n (inverted) PSCs with FAPbI3 absorber. Herein, the α-phase FAPbI3 is stabilized by constructing a buffer interface region between the NiOx HTL and FAPbI3, which not only diminishes NiOx/FAPbI3 interfacial reactions and defects but also facilitates carrier transport. Upon the construction of a buffer interface region, FAPbI3 inverted PSC exhibits a high-power conversion efficiency of 23.56% (certified 22.58%) and excellent stability, retaining 90.7% of its initial efficiency after heating at 80 °C for 1000 h and 84.6% of the initial efficiency after operating at the maximum power point under continuous illumination for 1100 h. Besides, as a light-emitting diode device, the FAPbI3 inverted PSC can be directly lit with an external quantum efficiency of 1.36%. This study provides a unique and efficient strategy to advance the application of α-phase FAPbI3 in inverted PSCs.  相似文献   

3.
Hybrid halide perovskite has established its credibility as high performance thin film photovoltaic technology. Perovskite based on formamidinium cation is at the core composition to top performances and stability. Herein, a depth study based on temperature-controlled in situ X-ray diffraction focusing on the photo-active formamidinium lead iodide (α-FAPbI3) is reported. In particular, the thermal stability of the latter and the degradation pathways under different experimental conditions are clarified. Based on this in situ technique, the lattice thermal expansion coefficient is reported that provides relevant information on possible mechanical stress created upon temperature cycling or damp heat test. The results support that α-FAPbI3 degradation is substantially accelerated when temperature is combined to illumination and when it is interfaced with the extraction layers. In addition, by contrast to in darkness for which α-FAPbI3 degrades directly into PbI2, the existence of a temperature gap under illumination involving an intermediate step with a non-crystalline phase resulting from the perovskite degradation and contributing to the formation of PbI2 by-product is revealed.  相似文献   

4.
The cost‐effective processability and high efficiency of the organic–inorganic metal halide perovskite solar cells (PSCs) have shown tremendous potential to intervene positively in the generation of clean energy. However, prior to an industrial scale‐up process, there are certain critical issues such as the lack of stability against over moisture, light, and heat, which have to be resolved. One of the several proposed strategies to improve the stability that has lately emerged is the development of lower‐dimensional (2D) perovskite structures derived from the Ruddlesden–Popper (RP) phases. The excellent stability under ambient conditions shown by 2D RP phase perovskites has made the scalability expectations burgeon since it is one of the most credible paths toward stable PSCs. In this review, the 2D/3D mixed system for photovoltaics (PVs) is elaborately discussed with the focus on the crystal structure, optoelectronic properties, charge carrier dynamics, and their impact on the photovoltaic performances. Finally, some of the further challenges are highlighted while outlining the perspectives of 2D/3D perovskites for high‐efficiency stable solar cells.  相似文献   

5.
In this study, a series of donor–acceptor–donor (D-A-D) type small molecules based on the fluorene and diphenylethenyl enamine units, which are distinguished by different acceptors, as holetransporting materials (HTMs) for perovskite solar cells is presented. The incorporation of the malononitrile acceptor units is found to be beneficial for not only carrier transportation but also defects passivation via Pb–N interactions. The highest power conversion efficiency of over 22% is achieved on cells based on V1359, which is higher than that of spiro-OMeTAD under identical conditions. This st shows that HTMs prepared via simplified synthetic routes are not only a low-cost alternative to spiro-OMeTAD but also outperform in efficiency and stability state-of-art materials obtained via expensive cross-coupling methods.  相似文献   

6.
Monolithic perovskite/organic tandem solar cells (POTSCs) have attracted increasing attention owing to ability to overcome the Shockley–Queisser limit. However, compromised sub-cells performance limits the tandem device performance, and the power conversion efficiency (PCE) of POTSCs is still lower than their single-junction counterparts. Therefore, optimized sub-cells with minimal energy loss are desired for producing high-efficiency POTSCs. In this study, an ionic liquid, methylammonium acetate (MAAc), is used to modify wide-bandgap perovskite sub-cells (WPSCs), and bathocuproine (BCP) is used to modify small-bandgap organic solar cells. The Ac group of MAAc can effectively heal the Pb defects in the all-inorganic perovskite film, which enables a high PCE of 17.16% and an open-circuit voltage (Voc) of 1.31 V for CsPbI2.2Br0.8-based WPSCs. Meanwhile, the BCP film, inserted at the ZnO/organic bulk-heterojunction (BHJ) interface, acts as a space layer to prevent direct contact between ZnO and the BHJ while passivating the surface defects of ZnO, thereby mitigating ZnO defect-induced efficiency loss. As a result, PM6:CH1007-based SOSCs exhibit a PCE of 15.46%. Integrating these modified sub-cells enable the fabrication of monolithic n–i–p structured POTSCs with a maximum PCE of 22.43% (21.42% certified), which is one of the highest efficiencies in such type of POTSCs.  相似文献   

7.
Excess lead(II) iodide (PbI2) has controversial roles in affecting the efficiency of perovskite solar cells (PSCs). Since the photoinstability of PbI2 is now known to largely accelerate perovskite degradation, suppressing and/or eliminating excess PbI2 is key to improving the stability of PSCs. Herein, process-dependent PbI2 formation on the surfaces of formamidinium lead triiodide (FAPbI3) films is examined. Due to the faster evaporation rate of organic substances, crystalline PbI2 as an inclusion is found within the triple junction grain boundaries. With this hypothesis, two strategies are suggested: control of the 1) vapor pressure and 2) stoichiometry of precursor solutions to induce sufficient reaction of FAPbI3. Although both strategies successfully eliminate the PbI2 as inclusions, due to the slower evaporation rate, vapor pressure control films also exhibit a larger grain size (≈1.18 µm) with a good film quality to attain the highest power conversion efficiency (PCE) of 24.5%. Furthermore, the phase stability of α-FAPbI3 is improved due to the elimination of the degradation sites induced by the photoinstability of PbI2. The findings explore the formation process of unwanted PbI2 (≈2.8%) and provide a simple method to effectively suppress its formation. This may further boost the PCE and stability, especially for FA-based perovskites.  相似文献   

8.
ZnTe/ZnTe:Cu layer is used as a complex back contact.The parmeters of CdTe solar cells with and without the complex back contacts are compared.The effects of un-doped layer thickness,doped concentration and post-deposition annealing temperature of the complex layer on solar cells preformance are investigated.The results show that ZnTe/ZnTe:Cu layer can improve back contacts and largely increase the conversion efficiency of CdTe solar cells.Un-doped layer and post-deposition annealing of high temperature can increase open voltage.Using the complex back contact,a small CdTe cell with fill factor of 73.14% and conversion efficiency of 12.93% is obtained.  相似文献   

9.
Perovskite degradation induced by surface defects and imperfect grain boundaries of films seriously damages the performance of perovskite solar cells (PSCs). Meanwhile, conventional organic molecules cannot maintain the long-time passivation effects under the stimulation of external environmental factors. Here, efficient and stable grain passivation in perovskite films is realized by preparing formic acid-functionalized 2D metal–organic frameworks (MOFs) as the terminated agent. Through robust interactions between exposed active sites and PbI2, the 2D MOFs tightly caps the surface of PbI2-terminated perovskite grains to stabilize the perovskite phases and aids the adhesion of adjacent grains. The MOFs mainly distributed at the grain boundaries of the perovskite film is directly observed at the microscopic scale. The modified perovskite films have regular morphology, lower defect density, and superior optoelectronic properties. Benefiting from the suppressed charge recombination and faster charge extraction, a power conversion efficiency of 21.28% is achieved for the best-performing PSC device. The unencapsulated PSCs with the MOFs modification maintain 88% and 81% of their initial efficiency after 750 h heating at 85  ° C under N2 atmosphere and more than 1000 h storage in ambient environment (25  ° C, RH  ≈  40%), respectively.  相似文献   

10.
In recent years, hybrid perovskite solar cells (PSCs) have attracted much attention owing to their low cost, easy fabrication, and high photoelectric conversion efficiency. Nevertheless, solution-processed perovskite films usually show substantial structural disorders, resulting in ion defects on the surface of lattice and grain boundaries. Herein, a series of D–π–A porphyrins coded as CS0 , CS1 , and CS2 that can effectively passivate the perovskite surface, increase VOC and FF, reduce the hysteresis effect, enhance power conversion efficiency to be higher than 22%, and improve the device stability is developed. The results in this study demonstrated that the donor–π–acceptor type porphyrin derivatives are promising passivators that can improve the cell performance of PSCs.  相似文献   

11.
As the power-conversion efficiency (PCE) of organic–inorganic lead halide perovskite solar cells (PSCs) is approaching the theoretical maximum, the most crucial issue concerns long-term ambient stability. Here, the application of PCN-224 quantum dots (QDs) is reported, a typical Zr-based porphyrinic metal–organic framework (MOF), to enhance the ambient stability of PSCs. PCN-224 QDs with abundant Lewis-base groups (e.g., CO, C−N, CN) contribute to high-quality perovskite films with enlarged grain size and reduced defect density by interaction with under-coordinated Pb2+. Meanwhile, PCN-224 QDs enable the well-matched energy level at the perovskite/hole transport layer (HTL) interface, thereby facilitating hole extraction and transport. More importantly, PCN-224 QDs-treated HTL can capture Li+ from bis(trifluoromethanesulfonyl)imide additive, leading to the reduced aggregation and less direct contact with moisture for hygroscopic Li-TFSI. Moreover, PCN-224 QDs mitigated Li+ ion migration into the perovskite layer, thus avoiding the formation of deleterious defects. The resultant devices yield a champion PCE of 22.51%, along with substantially improved durability, including humidity, thermal and light soaking stabilities. The findings provide a new approach toward efficient and stable PSCs by applying MOF QDs.  相似文献   

12.
The AR coatings for GaInP/GaAs tandem solar cell are simulated. Results show that, under the condition of the lack of suitable encapsulation, a very low energy loss could be reached on MgF2/ZnS system;in the case of glass encapsulation,the Al2O3/ZrO2 and Al2O3/TiO2 systems are appropriate choice; for AlInP window layer,the thickness of 30nm is suitable.  相似文献   

13.
2D Dion–Jacobson (DJ) tin halide perovskite shows impressive stability by introducing diamine organic spacer. However, due to the dielectric confinement and uncontrollable crystallization process, 2D DJ perovskite usually exhibits large exciton binding energy and poor film quality, resulting in unfavorable charge dissociation, carrier transport and device performance. Here, the ortho-, meta-, and para-isomers of phenylenediamine (PDA) are designed for 2D DJ tin halide perovskites. Theoretical simulation and experimental characterizations demonstrate that compared with p-PDA and m-PDA, o-PDA shows larger dipole moment, which further reduces the exciton binding energy for the 2D perovskites. Besides, there is a strong hydrogen bond interaction between o-PDA cation and inorganic octahedron, which not only improves the structural stability, but also induces larger aggregates in the precursor to form dense and uniform high-quality films, and strengthens the antioxidant barrier. More interestingly, femtosecond transient absorption further proves that o-PDA organic spacers can reduce unfavorable small n-phases, resulting in sufficient and effective charge transfer between different n-value. As a result, the 2D DJ (o-PDA)FA3Sn4I13 solar cells achieve a record power conversion efficiency of 7.18%. The study furnishes an effective method to optimize the carrier transport and device performance by tailoring the chemical structure of organic spacers.  相似文献   

14.
Due to their particular optical characteristics,metallic island films have the potential to significantly increase the energy conversion efficiency of solar cell.We experimentally and theoretically investigated the effect of substrate temperature on the morphologies and optical properties of the silver island films.At low temperature,below 300 ℃,as the substrate temperature increases.Compared to the films prepared at room temperature,the sizes of nanoparticles decrease and the Absorption peaks shift to shor...  相似文献   

15.
We report on the fabrication and characterization of CdTe thin-film solar cells with Cu-free MoO3?x /Au back contacts. CdTe solar cells with sputtered CdTe absorbers of thicknesses from 0.5 to 1.75 μm were fabricated on Pilkington SnO2:F/SnO2-coated soda–lime glasses coated with a 60- to 80-nm sputtered CdS layer. The MoO3?x /Au back contact layers were deposited by thermal evaporation. The incorporation of MoO3?x layer was found to improve the open circuit voltage (V OC) but reduce the fill factor of the ultrathin CdTe cells. The V OC was found to increase as the CdTe thickness increased.  相似文献   

16.
Mixed lead and tin (Pb/Sn) hybrid perovskites exhibit a great potential in fabricating all-perovskite tandem devices due to their easily tunable bandgaps. However, the energy deficit and instability in Pb/Sn perovskite solar cells (PSCs) constrain their practical applications, which renders defect passivation engineering indispensable to develop highly efficient and long-term stable PSCs. Herein, the mechanisms of strain tailoring and defect passivation in Pb/Sn PSCs by 2D ligands are investigated. The 2D ligands include electroneutral cations with long alkyl chain (LAC), iodates with relatively short alkyl chain (SAC) and their mixtures. This study reveals that LAC ligands facilitate the relaxation of tensile strain in perovskite films while SAC ligands cause strain buildup. By mixing LAC/SAC ligands, tensile strain in perovskite films can be balanced which improves solar cell performance. PSCs with admixed β-guanidinopropionic acid (GUA)/phenethylammonium iodide (PEAI) exhibit enhanced open circuit voltage and fill factor, which is attributed to reduced nonradiative recombination losses in the bulk and at the interfaces. Furthermore, the operational stability of PSCs is slightly improved by the mixed 2D ligands. This work reveals the mechanisms of 2D ligands in strain tailoring and defect passivation toward efficient and stable narrow-bandgap PSCs.  相似文献   

17.
Through theoretical analyses of the Shockley equation and the difference between a practical P-N junction and its ideal model, the mathematical models of P-N junction and solar cells had been obtained. With Matlab software, the V-I characteristics of diodes and solar cells were simulated, and a computer simulation model of the solar cells based on P-N junction was also established. Based on the simulation model, the influences of solar cell's internal resistances on open-circuit voltage and short-circuit current under certain illumination were numerically analyzed and solved. The simulation results showed that the equivalent series resistance and shunt resistance could strongly affect the V-I characteristics of solar cell, but their influence styles were different.  相似文献   

18.
Developing new polymerized small molecular acceptor (PSMA) is pivotal for improving the performance of all-polymer solar cells. On the basis of this newly developed CH-series small molecule acceptors, two PSMAs are reported herein (namely PZC16 and PZC17, respectively). To reduce the molecular torsion caused by the traditional aromatic π-bridges, non-aromatic conjugated units (ethynyl for PZC16 and vinylene for PZC17) are adopted as the linkers and their effect on the photo-physical properties as well as the device performance are systematically investigated. Both polymer acceptors exhibit co-planar molecular conformation, along with broad absorption ranges and suitable energy levels. In comparison with the PM6:PZC16 film, the PM6:PZC17 film exhibits more uniform phase separation in morphology with a distinct bi-continuous network and better crystallinity. The PM6:PZC17-binary-based devices exhibit a satisfactory PCE of 16.33%, significantly higher than 9.22% of the PZC16-based devices. Impressively, PM6:PZC17-based large area device (ca. 1 cm2) achieves an excellent PCE of 15.14%, which is among the top performance for reported all-polymer solar cells (all-PSCs).  相似文献   

19.
La0.7Sr0.3?x Ba x MnO3 (LSBMO: x = 0.09, 0.18, and 0.27) thin films were prepared on Pt-coated Si substrates using a radiofrequency magnetron sputtering technique at a substrate heating temperature of 450°C. The effects of varying the amount of substituted Ba2+ on the physical, chemical, and electrical properties of the perovskite manganite films were systematically investigated. X-Ray diffraction showed that the growth orientation and crystallinity of films were not affected by the amount of substituted Ba cations. Raman spectroscopy was used to determine the tilt of MnO6 octahedra and the Jahn–Teller-type distortion variation of the manganite films. The change in covalent characteristics of Mn–O bonds with increasing amounts of Ba2+ substituent was analyzed by x-ray photoelectron spectroscopy, specifically to examine the effects of bond characteristics on the resistive switching properties of LSBMO. The resistance of the LSBMO films increased with increasing Ba2+ content due to an increase in the covalent nature of Mn–O bonds. The resistive switching ratio increased with increasing Ba2+ amount, and relationships among resistive switching, Jahn–Teller distortion, and Mn–O bond character of LSBMO films were interpreted.  相似文献   

20.
The long-term stability of a 640x512 InSb focal plane array (FPA) with a pitch of 15 μm combined with a Stirling cooler and an interface block has been investigated.The dependences of the FPA correctability index on the operation time after a two-point correction of the irregularity have been obtained. The FPAs with two different circuits of the readout LSI cells that differ in the integration capacitance and transmission coefficients are considered. It has been found that, for the InSb FPA, the long-term stability is as high as several hours, which ensures continuous operation of the array in thermal imaging systems without additional calibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号