首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organolead halide perovskites have attracted extensive attentions as light harvesting materials for solar cells recently, because of its high charge‐carrier mobilities, high photoconversion efficiencies, low energy cost, ease of deposition, and so on. Herein, with CH3NH3PbI3 film deposited on flexible ITO coated substrate, the first organolead halide perovskite based broadband photodetector is demonstrated. The organolead halide perovskite photodetector is sensitive to a broadband wavelength from the ultraviolet light to entire visible light, showing a photo‐responsivity of 3.49 A W?1, 0.0367 A W?1, an external quantum efficiency of 1.19×103%, 5.84% at 365 nm and 780 nm with a voltage bias of 3 V, respectively. Additionally, the as‐fabricated photodetector exhibit excellent flexibility and robustness with no obvious variation of photocurrent after bending for several times. The organolead halide perovskite photodetector with high sensitivity, high speed and broad spectrum photoresponse is promising for further practical applications. And this platform creates new opportunities for the development of low‐cost, solution‐processed and high‐efficiency photodetectors.  相似文献   

2.
Recently, newly engineered all‐inorganic cesium lead halide perovskite nanocrystals (IPNCs) (CsPbX3, X = Cl, Br, I) are discovered to possess superior optical gain properties appealing for solution‐processed cost‐effective lasers. Yet, the potential of such materials has not been exploited for practical laser devices, rendering the prospect as laser media elusive. Herein, the challenging but practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 IPNCs, featuring low threshold (9 µJ cm?2), directional output (beam divergence of ≈3.6°), and favorable stability, are realized for the first time. Notably, the lasing wavelength can be tuned across the red, green, and blue region maintaining comparable thresholds, which is promising in developing single‐source‐pumped full‐color visible lasers. It is fully demonstrated that the characteristics of the VCSELs can be versatilely engineered by independent adjustment of the cavity and solution‐processable nanocrystals. The results unambiguously reveal the feasibility of the emerging CsPbX3 IPNCs as practical laser media and represent a significant leap toward CsPbX3 IPNC‐based laser devices.  相似文献   

3.
Transparent and flexible photodetectors hold great promise in next‐generation portable and wearable optoelectronic devices. However, most of the previously reported devices need an external energy power source to drive its operation or require complex fabrication processes. Herein, designed is a semitransparent, flexible, and self‐powered photodetector based on the integrated ferroelectric poly(vinylidene‐fluoride‐trifluoroethylene) (P(VDF‐TrFE)) and perovskite nanowire arrays on the flexible polyethylene naphthalate substrate via a facile imprinting method. Through optimizing the treatment conditions, including polarization voltage, polarization time, and the concentration of P(VDF‐TrFE), the resulting device exhibits remarkable detectivity (7.3 × 1012 Jones), fast response time (88/154 µs) at zero bias, as well as outstanding mechanical stability. The excellent performance is attributed to the efficient charge separation and transport originating from the highly oriented 1D transport pathway and the polarization‐induced internal electric field within P(VDF‐TrFE)/perovskite hybrid nanowire arrays.  相似文献   

4.
Although outstanding power conversion efficiency (PCE) has been achieved in flexible perovskite solar cells, unsatisfactory operational stability and toxicity caused by the moisture transmittance of polymer packaging are still the bottleneck challenges that limit their applications. Herein, inspired by the non-selective permeability of inactivated cell membrane, the diphosphatidyl-glycerol (Di-g) is tactfully introduced as a self-shield interface upon the perovskite layer. 96% of lead leakage is suppressed because the amphipathic Di-g can simultaneously bind tightly to the divalent lead ion and afford an interfacial water-resistance. More importantly, the gradient distribution of lattice residual stress perpendicular to the substrate are optimized. The resultant flexible devices achieve a PCE of 20.29% and 15.01% at effective areas of 1.01 and 21.82 cm2 respectively, yielding excellent environmental and mechanical stability. This strategy exhibits the feasibility of developing interfacial encapsulation to stabilize scalable PSCs with negligible lead leakage.  相似文献   

5.
All‐inorganic halide perovskite materials are regarded as promising materials in information display applications owing to their tunable color, narrow emission peak, and easy processability. However, the photoluminescence (PL) stability of halide perovskite films is still inferior due to their poor thermal stability and hygroscopic properties. Herein, all‐inorganic perovskite films are prepared through vacuum thermal deposition method to enhance thermal and hygroscopic stability. By intentionally adding extra bromide source, a structure of CsPbBr3 nanocrystals embedded in a CsPb2Br5 matrix (CsPbBr3/CsPb2Br5) is formed via an air exposure process, leading to impressive PL stability in ambient atmosphere. In addition, the as‐fabricated CsPbBr3/CsPb2Br5 structure shows enhanced PL intensity due to the dielectric confinement. The CsPbBr3/CsPb2Br5 structure film can almost reserve its initial PL intensity after four months, even stored in ambient atmosphere. The PL intensity for CsPbBr3/CsPb2Br5 films vanishes at elevated temperature and recovers by cooling down in a short time. The reversible PL conversion process can be repeated over hundreds of times. Based on the reversible PL property, prototype thermal‐driven information display devices are demonstrated by employing heating circuits on flexible transparent substrates. These robust perovskite films with reversible PL characteristics promise an alternative solid‐state emitting display.  相似文献   

6.
With rapid development of photovoltaic technology, flexible perovskite solar cells (f-PSCs) have attracted much attention for their light weight, high flexibility and portability. However, the power conversion efficiency (PCE) achieved so far is not yet comparable to that of rigid devices. This is mainly due to the great challenge of depositing homogeneous and high-quality perovskite films on flexible substrate. In this study, the pre-buried 3-aminopropionic acid hydroiodide (3AAH) additives into the electron transport layer (ETL) and modified the ETL/perovskite (PVK) interface by a bottom-up strategy. 3AAH treatment induced a templated perovskite grain growth and improved the quality of the ETL. By this, the residual stresses generated in PVK during the annealing-cooling process are released and converted into micro-compressive stresses. As a result, the defect density of f-PSCs with pre-buried 3AAH is reduced and the photovoltaic performance is greatly improved, reaching an exceptional PCE of 23.36%. This strategy provides a new idea to bridge the gap between flexible and rigid devices.  相似文献   

7.
Halide perovskites are qualified to meet the flexibility demands of optoelectronic field because of their merits of flexibility, lightness, and low cost. However, the intrinsic defects and deformation-induced ductile fracture in both perovskite and buried interface significantly restrict the photoelectric performance and longevity of flexible perovskite solar cells (PVSCs). Here, a dual-dynamic cross-linking network is schemed to boost the photovoltaic efficiency and mechanical stability of flexible PVSCs by incorporating natural polymerizable small molecule α-lipoic acid (LA). The LA therein can be autonomously ring-opening polymerized through dynamic disulfide bonds and hydrogen bonds, concurrently forming coordination bonds to interact with perovskite component. Importantly, the polymerization product can serve as efficacious passivating and toughening agents to simultaneously optimize interfacial contact, enhance perovskite crystallinity and sustain robust mechanical bendability. Subsequently, the rigid (or flexible) p-i-n device realizes a champion efficiency of 22.43% (or 19.03%) with prominent operational stability. Moreover, the dual-dynamic cross-linking network endows PVSCs with bendability and self-healing capacity, allowing the optimized devices to retain >80% efficiency after 3000 bending cycles, and subsequently restore to ≈95% of its initial efficiency under mild heat-treatment. This toughening and self-healing strategy provides a facile and efficient path to prolong operational lifetime of flexible device.  相似文献   

8.
Although much progress is made toward enhancing the efficiency of perovskite solar cells (PSCs), their operational reliability, particularly their mechanical stability, which is a crucial factor for flexible PSCs (f-PCSs), has not attracted sufficient attention. The defects in the perovskite layer, especially on the top and the buried surface of the perovskite layer, can induce perovskite fracture, highly limiting the performance of f-PSCs. Herein, a novel multifunctional organic salt, metformin hydrochloride, which can passivate cationic and anionic defects, is incorporated on both the top and buried surfaces of perovskite layer to suppress defects. As a result, a power conversion efficiency (PCE) of 24.40% for rigid PSCs and a PCE of 22.04% for f-PSCs are achieved. Simultaneously, the device can retain 90% and 80% of the initial efficiency after 1000 h of light illumination and 10 000 bending cycles, respectively, showing excellent operational stability. This study may provide a global way to design a passivation strategy and fabricate flexible perovskite solar cells with high efficiency and stability.  相似文献   

9.
为描述飞秒激光辐照半导体材料的热力响应过程,扩展了热电子崩力和自恰场两种模型,得到了完全耦合的非线性热弹方程组。在单轴应力条件下,利用有限差分法,计算了500fs脉冲激光作用下硅膜内载流子温度、晶格温度、热应力和热电子崩力的变化情况,同时考虑了能量密度和薄膜厚度两个因素的影响。数值结果表明:能量密度越高达到热平衡所需的时间就越长;对于比较薄的硅膜,随着激光作用时间的增加,热应力的双峰逐渐增加并由前后表面同时向薄膜的中间移动。  相似文献   

10.
Lead halide perovskites exhibit extraordinary optoelectronic performances and are being considered as a promising medium for high-quality photonic devices such as single-mode lasers. However, for perovskite-based single-mode lasers to become practical, fabrication and integration on a chip via the standard top-down lithography process are strongly desired. The chief bottleneck to achieving lithography of perovskites lies in their reactivity to chemicals used for lithography as illustrated by issues of instability, surface roughness, and internal defects with the fabricated structures. The realization of lithographic perovskite single-mode lasers in large areas remains a challenge. In this work, a self-healing lithographic patterning technique using perovskite CsPbBr3 nanocrystals is demonstrated to realize high-quality and high-crystallinity single-mode laser arrays. The self-healing process is compatible with the standard lithography process and greatly improves the quality of lithographic laser cavities. A single-mode microdisk laser array is demonstrated with a low threshold of 3.8 µJ cm−2. Moreover, the control of the lasing wavelength is made possible over a range of up to 6.4 nm by precise fabrication of the laser cavities. This work presents a general and promising strategy for standard top-down lithography fabrication of high-quality perovskite devices and enables research on large-area perovskite-based integrated optoelectronic circuits.  相似文献   

11.
Flexible and self‐powered perovskite photodetectors attract widespread research interests due to their potential applications in portable and wearable optoelectronic devices. However, the reported devices mainly adopt an independent layered structure with complex fabrication processes and high carrier recombination. Herein, an integrated ferroelectric poly(vinylidene‐fluoride‐trifluoroethylene) (P(VDF‐TrFE)) and perovskite bulk heterojunction film photodetector on the polyethylene naphthalate substrate is demonstrated. Under the optimum treatment conditions (the polarization voltage and time, and the concentration of P(VDF‐TrFE)), the photodetector exhibits a largely enhanced performance compared to the pristine perovskite device. The resulting device exhibits ultrahigh performance with a large detectivity (1.4 × 1013 Jones) and fast response time (92/193 µs) at the wavelength of 650 nm. The improved performance is attributed to the fact that the polarized P(VDF‐TrFE)/perovskite hybrid film provides a stronger built‐in electric field to facilitate the separation and transportation of photogenerated carriers. These findings provide a new route to design self‐powered photodetectors from the aspect of device structure and carrier transport.  相似文献   

12.
Perovskite solar cells (PSCs) are one of the most promising solar energy conversion technologies owing to their rapidly developing power conversion efficiency (PCE). Low‐temperature solution processing of the perovskite layer enables the fabrication of flexible devices. However, their application has been greatly hindered due to the lack of strategies to fabricate high‐quality electron transport layers (ETLs) at the low temperatures (≈100 °C) that most flexible plastic substrates can withstand, leading to poor performances for flexible PSCs. In this work, through combining the spin‐coating process with a hydrothermal treatment method, ligand‐free and highly crystalline SnO2 ETLs are successfully fabricated at low temperature. The flexible PSCs based on this SnO2 ETL exhibit an excellent PCE of 18.1% (certified 17.3%). The flexible PSCs maintained 85% of the initial PCE after 1000 bending cycles and over 90% of the initial PCE after being stored in ambient air for 30 days without encapsulation. The investigation reveals that hydrothermal treatment not only promotes the complete removal of organic surfactants coated onto the surface of the SnO2 nanoparticles by hot water vapor but also enhances crystallization through the high vapor pressure of water, leading to the formation of high‐quality SnO2 ETLs.  相似文献   

13.
基于量子级联激光器的气体检测研究   总被引:1,自引:0,他引:1  
随着社会的发展,对基于激光光谱技术的快速、灵敏和选择性气体探测的需求日益增加,量子级联(QC)激光器特有的高输出功率、宽调谐范围和能够在室温或者接近室温下工作的特性使它成为气体遥测的理想光源.详细描述了QC激光器,介绍了基于室温脉冲QC-DFB激光器的典型的中红外激光光谱实验装置,并探讨了QC激光器应用于气体检测的广阔前景.  相似文献   

14.
As one of the most promising hole transport layers (HTLs), nickel oxide (NiOx) has received extensive attention due to its application in flexible large-area perovskite solar cells (PSCs). However, the poor interface contact caused by inherent easy-agglomeration phenomenon of NiOx nanoparticles (NPs) is still the bottleneck for achieving high-performance devices. Herein, a general strategy to synthesize NiOx NPs with high crystallinity and good dispersibility via the polymer network micro-precipitation method is reported. Promisingly, this approach realizes the flow-division of precipitant and the restraint of the NPs motion, thereby effectively alleviating the coagulation phenomenon caused by excessive local concentration and secondary movement adsorption. Furthermore, the addition of ionic liquid not only inhibits the secondary aggregation of NiOx NPs during the dispersion process, but also significantly enhances the properties of the colloidal solution. Ultimately, the 1.01 cm2 PSCs based on the optimized NiOx HTLs achieve the champion power conversion efficiency of 20.91% and 19.17% on rigid and flexible substrates, respectively. Moreover, the reproducibility and stability of PSCs are also significantly improved, especially for flexible devices. Overall, this strategy provides the possibility for flexible, large-area fabrication of high-quality NiOx HTLs to promote the development of stable and efficient perovskite devices.  相似文献   

15.
Self-assembly of nanocrystals into controlled structures while uncompromising their properties is one of the key steps in optoelectronic device fabrication. Herein, zigzag CsPbBr3 perovskite nanocrystals are demonstrated with a precise number of components with nanocube morphology, these can be successfully obtained through a dipole-induced self-assembly process. The addition of a trace amount of deionized water facilitates the transfer from CsPbBr3 nanocubes to intermediates of CsPb2Br5 and Cs3In2Br9, which then fastly release reaction monomers leading to further homogenous nucleation of CsPbBr3 nanocubes, followed by the formation of zigzag CsPbBr3 nanocrystals through a dipole-induced self-assembly process. Dipole moment along <110> axis is found to be the driving force for the assembly of nanocubes into zigzag nanocrystals. The zigzag CsPbBr3 nanocrystals exhibit desirable optical properties comparable to their nanocube counterparts and offer advantages for amplified spontaneous emission and lasing applications with low pump thresholds of 3.1 and 6.02 µJ cm−2, respectively. This study not only develops a strategy for producing highly controlled zigzag perovskite nanocrystals and provides insights on the dipole-induced self-assembly mechanisms, but also opens an avenue for their application in lasing.  相似文献   

16.
For realizing flexible perovskite solar cells (PSCs), it is important to develop low‐temperature processable interlayer materials with excellent charge transporting properties. Herein, a novel polymeric hole‐transport material based on 1,4‐bis(4‐sulfonatobutoxy)benzene and thiophene moieties (PhNa‐1T) and its application as a hole‐transport layer (HTL) material of high‐performance inverted‐type flexible PSCs are introduced. Compared with the conventionally used poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the incorporation of PhNa‐1T into HTL of the PSC device is demonstrated to be more effective for improving charge extraction from the perovskite absorber to the HTL and suppressing charge recombination in the bulk perovskite and HTL/perovskite interface. As a result, the flexible PSC using PhNa‐1T achieves high photovoltaic performances with an impressive power conversion efficiency of 14.7%. This is, to the best of our knowledge, among the highest performances reported to date for inverted‐type flexible PSCs. Moreover, the PhNa‐1T‐based flexible PSC shows much improved stability under an ambient condition than PEDOT:PSS‐based PSC. It is believed that PhNa‐1T is a promising candidate as an HTL material for high‐performance flexible PSCs.  相似文献   

17.
Flexible perovskite solar cells (f-PSCs) show great promise in portable-power applications (e.g., chargers, drones) and low-cost, scalable productions (e.g., roll-to-roll). However, in conventional n–i–p architecture f-PSCs, the low-temperature processed metal oxide electron transport layers (ETLs) usually suffer from high resistance and severe defects that limit the power conversion efficiency (PCE) improvement of f-PSCs. Besides the enhancement in the mobility of metal oxide and passivation for perovskite/ETL interfacial defects reported in previous literature, herein, the electron transport loss between the metal oxide nanocrystallines within the ETL is studied by introducing an amorphous F-doped TiOx (F-TiOx) caulked crystalline SnO2 composite ETL. The F-TiOx in this novel composite ETL acts as an interstitial medium between adjacent SnO2 nanocrystallines, which can provide more electron transport channels, effectively passivate oxygen vacancies, and optimize the energy level arrangement, thus significantly enhancing the electron mobility of ETL and reducing the charge transport losses. The composite ETL-based f-PSCs achieve a high PCE of 22.70% and good operational stability. Furthermore, a moderate roughness of the composite ETL endows f-PSCs with superior mechanical reliability by virtue of a strong coupling at the ETL/perovskite interface, by which the f-PSCs can maintain 82.11% of their initial PCE after 4000 bending cycles.  相似文献   

18.
Sn-based perovskite materials are promising lead-free alternatives in thin film photodetectors (PDs) for applications such as optical communications, night visions and biomedical near-infrared imaging systems. However, constructing Sn-based photodetectors with high sensitivity, ultrafast response, and good operation stability has been a challenge. Herein, the phenyl-ethyl ammonium (PEA+) additive is introduced in pristine FASnI3, which regulates the thin film growth, passivates the trap/defect states, prevents Sn2+/Sn4+oxidation, and releases the crystal strain. The Resulting FA0.8PEA0.2SnI3 thin films exhibit highly crystalline order and flexibility. A self-powered PD using FA0.8PEA0.2SnI3 as the active layer demonstrates excellent responsivity of 0.262 W−1, detectivity of 2.3 × 1011 Jones. And it possesses the fastest rise and decay time of 25 µs and 42 µs as compared with the state-of-art Sn-based perovskite PDs. The transient absorption spectroscopy analysis validates greatly reduced trapping states and defects of FASnI3 with the PEA+ film for ultrafast response. A flexible Sn-based perovskite PD without any encapsulation in air continuously shows ultrafast responses after 10,000 bending cycles. Meanwhile, a flexible imaging system can be realized by a 5 × 5 PD array with good sensing results. This study shows great potential in nontoxic and ultrafast Sn-based perovskite PDs for flexible imaging applications.  相似文献   

19.
Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era.  相似文献   

20.
Halide perovskites are one of the ideal photovoltaic materials for constructing flexible solar devices due to relatively high efficiencies for low‐temperature solution‐processed devices. However, the overwhelming majority of flexible perovskite solar cells are produced using spin coating, which represents a major hurdle for upscaling. Here, a scalable approach is reported to fabricate efficient and robust flexible perovskite solar cells on a polymer substrate. Thiourea is introduced into perovskite precursor solution to modulate the crystal growth, resulting in dense and uniform perovskite thin films on rough surfaces. As a decisive step, a cascade energy alignment is realized for the hole extraction layer by rationally designing a bilayer interface comprised of PEDOT:PSS/PTAA with a distinct offset in the highest occupied molecular orbital levels, enabling markedly enhanced charge extraction and spectral response. An efficiency as high as 19.41% and a record fill factor up to 81% are achieved for flexible perovskite devices processed by a scalable printing method. Equally important, the bilayer interface reinforces the bendability of the indium tin oxide substrate, leading to enhanced mechanical robustness of the flexible devices. These results underpin the importance of morphology control and interface design in constructing high‐performance flexible perovskite solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号