首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Salt stress represents an increasing threat to crop growth and yield in saline soil. In this study, we identified a maize calcineurin B-like protein-interacting protein kinase (CIPK), ZmCIPK21, which was primarily localized in the cytoplasm and the nucleus of cells and displayed enhanced expression under salt stress. Over-expression of ZmCIPK21 in wild-type Arabidopsis plants increased their tolerance to salt, as supported by the longer root lengths and improved growth. The downstream stress-response genes, including dehydration-responsive element-binding (DREB) genes were also activated in transgenic plants over-expressing ZmCIPK21. In addition, introduction of the transgenic ZmCIPK21 gene into the Arabidopsis mutant cipk1-2 rescued the salt-sensitive phenotype under high salt stress. Measurement of Na+ and K+ content in transgenic plants showed that over-expression of ZmCIPK21 decreased accumulation of Na+ and allowed retention of relatively high levels of K+, thereby enhancing plant tolerance to salt conditions.  相似文献   

3.
Hydrogen sulfide (H2S) has been shown to participate in various stress responses in plants, including drought, salinity, extreme temperatures, osmotic stress, and heavy metal stress. Manganese (Mn), as a necessary nutrient for plant growth, plays an important role in photosynthesis, growth, development, and enzymatic activation of plants. However, excessive Mn2+ in the soil can critically affect plant growth, particularly in acidic soil. In this study, the model plant Arabidopsis thaliana was used to explore the mechanism of H2S participation and alleviation of Mn stress. First, using wild-type Arabidopsis with excessive Mn2+ treatment, the following factors were increased: H2S content, the main H2S synthetase L-cysteine desulfhydrase enzyme (AtLCD) activity, and the expression level of the AtLCD gene. Further, using the wild-type, AtLCD deletion mutant (lcd) and overexpression lines (OE5 and OE32) as materials, the phenotype of Arabidopsis seedlings was observed by exogenous application of hydrogen sulfide donor sodium hydrosulfide (NaHS) and scavenger hypotaurine (HT) under excessive Mn2+ treatment. The results showed that NaHS can significantly alleviate the stress caused by Mn2+, whereas HT aggravates this stress. The lcd mutant is more sensitive to Mn stress than the wild type, and the overexpression lines are more resistant. Moreover, the mechanism of H2S alleviating Mn stress was determined. The Mn2+ content and the expression of the Mn transporter gene in the mutant were significantly higher than those of the wild-type and overexpression lines. The accumulation of reactive oxygen species was significantly reduced in NaHS-treated Arabidopsis seedlings and AtLCD overexpression lines, and the activities of various antioxidant enzymes (SOD, POD, CAT, APX) also significantly increased. In summary, H2S is involved in the response of Arabidopsis to Mn stress and may alleviate the inhibition of Mn stress on Arabidopsis seedling growth by reducing Mn2+ content, reducing reactive oxygen species content, and enhancing antioxidant enzyme activity. This study provides an important basis for further study of plant resistance to heavy metal stress.  相似文献   

4.
Unknown positive ion isopolyoxorhenates have been observed using electrospray ionization mass spectrometry (ESI+). The ESI+ studies of ammonium and alkali metal (Na+ and K+) perrhenate salts in aqueous solution at pH 4.5 show the existence of the series [Ax+1ReVIIxO4x]+ (where x=1–5 and A=NH4+, Na+ and K+). In the potassium perrhenate system, the series [Kx+2ReVReVIIxO4x+3]+ (x=0–4) has also been characterised. All of these four series have {AReO4} as the aggregation unit. In the ammonium perrhenate system, the monomeric Re(VII)-containing species, [(NH4)2(H2ReO5)]+, [(NH4)3(HReO5)]+ and [(NH4)4(ReO5)]+ were also detected.  相似文献   

5.
6.
7.
Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.  相似文献   

8.
Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional asymmetry are still poorly understood because the structure of the physiologically relevant dimer form with only one active site occupied by the substrate is unknown. We addressed this issue by molecular dynamics (MD) simulations of the H+-transporting mPPase of Vigna radiata, starting from its crystal structure containing a close substrate analog (imidodiphosphate, IDP) in both active sites. The MD simulations revealed pre-existing subunit asymmetry, which increased upon IDP binding to one subunit and persisted in the fully occupied dimer. The most significant asymmetrical change caused by IDP binding is a ‘rigid body’-like displacement of the lumenal loop connecting α-helices 2 and 3 in the partner subunit and opening its exit channel for water. This highly conserved 14–19-residue loop is found only in plant vacuolar mPPases and may have a regulatory function, such as pH sensing in the vacuole. Our data define the structural link between the loop and active sites and are consistent with the published structural and functional data.  相似文献   

9.
Plants evolve a prompt and robust immune system to defend themselves against pathogen infections. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first battle layer activated upon the PAMP’s perception, which leads to multiple defense responses. The plasma membrane (PM) H+-ATPases are the primary ion pumps to create and maintain the cellular membrane potential that is critical for various essential biological processes, including plant growth, development, and defense. This study discovered that the PM H+-ATPase AHA5 is negatively involved in Arabidopsis PTI against the virulent pathogen Pseudomonas syringae pvr. tomato (Pto) DC3000 infection. The aha5 mutant plants caused the reduced stomata opening upon the Pto infection, which was associated with the salicylic acid (SA) pathway. In addition, the aha5 mutant plants caused the increased levels of callose deposition, defense-related gene expression, and SA accumulation. Our results also indicate that the PM H+-ATPase activity of AHA5 probably mediates the coupling of H2O2 generation and the apoplast alkalization in PTI responses. Moreover, AHA5 was found to interact with a vital defense regulator, RPM1-interacting protein 4 (RIN4), in vitro and in vivo, which might also be critical for its function in PTI. In summary, our studies show that AHA5 functions as a novel and critical component that is negatively involved in PTI by coordinating different defense responses during the Arabidopsis–Pto DC3000 interaction.  相似文献   

10.
Polymerization of allyl methacrylate (AMA) with wool fabrics using different initiators, namely, potassium persulphate, Fe2+? H2O2, benzoyl peroxide, ceric ammonium nitrate, and vanadium pentanitrate, was investigated. The percent of polymer add-on depends upon the type and concentration of the initiator. Addition of metallic salts such as Fe3+ to the polymerization system enhances polymerization significantly when benzoyl peroxide and potassium persulphate are used independently as initiator. The opposite holds true for ceric ammonium nitrate and vanadium pentanitrate. With Fe2+? H2O2, on the other hand, the enhancement is marginal. Also studied was the incorporation of Li+, Cu++, and Fe3+ at different concentrations in AMA—wool–benzoyl peroxide polymerization systems. Determination of the polymer add-on on the basis of double bond analysis revealed that the remained double bond is governed by the magnitude of the polymer add-on as well as by the type of initiator.  相似文献   

11.
12.
The development of ecological circular agriculture has been highly encouraged by the Chinese government to recycle agricultural wastes, reduce mineral fertilizer input, and protect the environment. Biogas slurry, a byproduct of biogas engineering developed in rural areas of China, could be used as N fertilizer for crop growth. The field experiments were conducted in 2014 and 2015 to study the plant growth responses and environmental impacts of applying biogas slurry to two-season Zizania aquatica Turcz. growth. The potential factors that restrict the rational use of biogas slurry were also clarified. Mineral N fertilizer can be completely or partly substituted by N fertilizer from biogas slurry to satisfy Z. aquatica plant growth. It was not at the cost of sacrificing yield, dry matter accumulation, N accumulation and physiological N use efficiency in the above-ground parts. However, the growth inhibition occurs when the N quantity in biogas slurry was 2 or 2.7 times higher than that of mineral N fertilizer. Vitamin C in non-shell swollen culms (as edible part) of Z. aquatica significantly increased after biogas slurry application. Biogas slurry application substantially increased the N concentrations, i.e., total N, NH4 +–N, and NO3 ?–N in floodwater and delayed the time to reach national discharge standards. However, biogas slurry application did not affect the N concentrations in percolating water compared with the treatment with mineral N fertilizer only. Applying biogass slurry did not generate potential pollution risks by trace elements (Cu, Zn, Pb, Cr, Cd, As, and Hg) in the non-shell swollen culm and soil, and did not increase the nitrate content in non-shell swollen culm. We found the NH4 +–N concentration in biogas slurry can account for 77–93% of total N and reflects the N level in biogas slurry to a great degree. Semi-quantitative color-based colorimetric methods possessing simple and fast characteristics should be developed to determine the NH4 +–N concentration with the purpose of promoting reasonable use of biogas slurry in area of crop cultivation. Otherwise, excessive use of biogas slurry can adversely affect crops and increase environmental risks.  相似文献   

13.
Abstract

An in situ analytical method was demonstrated to measure the proton concentration ([H+]C-RUV) of an aerosol particle by using colorimetry integrated with a Reflectance UV-Visible spectrometer (C-RUV). Acidic particles comprising ammonium, sulfate, and water were generated in a flow tube under varying humidity and employed to calibrate the method using the inorganic thermodynamic models (i.e., E-AIM and ISORROPIA). The predictive [H+]C-RUV equation derived using strongly acidic compositions was then extended to ammonia-rich aerosols, which were lacking in the database of the thermodynamic models. The predictive [H+]C-RUV equation was also expanded to aerosols composed of sodium, ammonium, and sulfate. [H+]C-RUV generally agrees with both E-AIM predicted [H+] and ISORROPIA predicted [H+] for highly acidic aerosols, or aerosols at high humidity. For ammonia-rich aerosols under low humidity, [H+]C-RUV disagrees with that predicted from inorganic thermodynamic models. C-RUV was feasible for ambient aerosols because colorimetry is specific to aerosol acidity. Most aerosols collected at the University of Florida between 2018 and 2019 were acidic. Sodium ions appeared during the spring and summer, as coastal sea breezes traveled inland. The concentrations of ammonium and nitrate were high in the winter due to the phase partitioning of nitric acid and ammonia gases. The fraction of non-electrolytic dialkyl-organosulfate (diOS) to total sulfate is estimated by comparing the actual particle [H+] measured by C-RUV to the [H+] predicted using the inorganic composition and the inorganic thermodynamic models. The diOS fraction varied from 0% to 60% and was higher in the summer months when [H+] is high.

Copyright © 2020 American Association for Aerosol Research  相似文献   

14.
A series of phosphotungstic quaternary ammonium salts, Q3 (PW12O40) and Q3(PW4O16) [Q = (C5H5)N+(C16H33), (C16H33)N+(CH3)3, (C4H9)4N+, and (CH3)4N+], were used as the catalysts in oxidation of cyclopentene. The catalysts [(C5H5)N(C16H33)]3(PW4O16) and [(C16H33)N(CH3)3]3(PW4O16) showed high catalytic activity in the selective oxidation of cyclopentene while using H2O2 (50%) as an oxidant and 2-propanol as a solvent. The oxidation products mainly consisted of glutaraldehyde, cis-1,2-cyclopentanediol and trans-1,2-cyclopentanediol. The above-mentioned two catalysts were dissolved completely in the reaction medium during the catalysis process and precipitated themselves from the reaction system after reaction, showing the characteristics of reaction-controlled phase-transfer catalysis. The types of quaternary ammonium cations and the phosphotungstic anions in phosphotungstic quaternary ammonium salts affected catalytic activity.  相似文献   

15.
Salt stress is one of the major significant restrictions that hamper plant development and agriculture ecosystems worldwide. Novel climate-adapted cultivars and stress tolerance-enhancing molecules are increasingly appreciated to mitigate the detrimental impacts of adverse stressful conditions. Sorghum is a valuable source of food and a potential model for exploring and understanding salt stress dynamics in cereals and for gaining a better understanding of their physiological pathways. Herein, we evaluate the antioxidant scavengers, photosynthetic regulation, and molecular mechanism of ion exclusion transporters in sorghum genotypes under saline conditions. A pot experiment was conducted in two sorghum genotypes viz. SSG 59-3 and PC-5 in a climate-controlled greenhouse under different salt concentrations (60, 80, 100, and 120 mM NaCl). Salinity drastically affected the photosynthetic machinery by reducing the accumulation of chlorophyll pigments and carotenoids. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, GST, DHAR, MDHAR, GSH, ASC, proline, GB), as well as protecting cell membrane integrity (MDA, electrolyte leakage). Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via the concomitant upregulation of SbSOS1, SbSOS2, and SbNHX-2 and SbV-Ppase-II ion transporter genes in sorghum genotypes. Overall, these results suggest that Na+ ions were retained and detoxified, and less stress impact was observed in mature and younger leaves. Based on the above, we deciphered that SSG 59-3 performed better by retaining higher plant water status, photosynthetic assimilates and antioxidant potential, and the upregulation of ion transporter genes and may be utilized in the development of resistant sorghum lines in saline regions.  相似文献   

16.
Rice (Oryza sativa), a staple crop for a substantial part of the world’s population, is highly sensitive to soil salinity; however, some wild Oryza relatives can survive in highly saline environments. Sodium/hydrogen antiporter (NHX) family members contribute to Na+ homeostasis in plants and play a major role in conferring salinity tolerance. In this study, we analyzed the evolution of NHX family members using phylogeny, conserved domains, tertiary structures, expression patterns, and physiology of cultivated and wild Oryza species to decipher the role of NHXs in salt tolerance in Oryza. Phylogenetic analysis showed that the NHX family can be classified into three subfamilies directly related to their subcellular localization: endomembrane, plasma membrane, and tonoplast (vacuolar subfamily, vNHX1). Phylogenetic and structural analysis showed that vNHX1s have evolved from streptophyte algae (e.g., Klebsormidium nitens) and are abundant and highly conserved in all major land plant lineages, including Oryza. Moreover, we showed that tissue tolerance is a crucial trait conferring tolerance to salinity in wild rice species. Higher Na+ accumulation and reduced Na+ effluxes in leaf mesophyll were observed in the salt-tolerant wild rice species O. alta, O. latifolia, and O. coarctata. Among the key genes affecting tissue tolerance, expression of NHX1 and SOS1/NHX7 exhibited significant correlation with salt tolerance among the rice species and cultivars. This study provides insights into the evolutionary origin of plant NHXs and their role in tissue tolerance of Oryza species and facilitates the inclusion of this trait during the development of salinity-tolerant rice cultivars.  相似文献   

17.
《Electrochimica acta》1987,32(5):765-771
The potential response of cupric hexacyanoferrate (CuHCF) thin films on glassy carbon substrate was studied by cyclic voltammetry in potassium and ammonium ions. The shift in potential with ammonium ion concentration is Nernstian with a difference of +0.70 V in 1 M NH+4 with respect to 1 M K+. Equilibrium spectroelectrochemical studies have shown that the mole fraction of CuHCF is a reflection of film activity. Kinetic studies have indicated that the redox reaction is faster in ammonium ion than in potassium ion. Similarities and differences in the equilibrium and kinetic response of the film in both electrolytes are discussed.  相似文献   

18.
Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.  相似文献   

19.
Ammonium sulfate and potassium nitrate added as a top dressing and rice straw were incorporated into soil to understand their effect on the chemical nature of the paddy soil and on the growth and yield of rice plants during two successive crop seasons. Redox potential (Eh) determination indicated that the paddy soil appeared to be the reduced form in mixture with rice residues. The amounts of ammonium nitrogen (NH4 +—N) and nitrate nitrogen (NO3 —N) were significantly higher in the second crop than in the first crop, and the quantity of NH4 +—N was about 10 times greater than that of NO3 —N. The incorporation of rice straw decreased both the available nitrogen and the soil cations, Zn2+, Cu2+, Ca2+, Mn2+, and Na+. The quantity of Zn2+, Cu2+, Mg2+, and Na+ was significantly lower in the second crop that that in the first. The growth and yield of rice plants were significantly affected by cultural treatment; thus the ammonium sulfate dressing treatment resulted in higher yields than the potassium nitrate treatment. The NH4 +—N treatment had an antagonistic effect on the phytotoxic nature of rice straw decomposed in soil. The phytotoxicity (primarily phenolic type compounds) of aqueous extracts of soil varied between treatments and was significantly higher in the soil which had been mixed with rice straw. This finding correlated well with the higher amounts of phytotoxic plant phenolics produced by the decomposing rice residues in the soil.This study was supported by the National Science Council of the Republic of China.Paper No. 215 of the Scientific Journal Series, Institute of Botany, Academia Sinica.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号