首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The application of combinational therapy makes up for the limitation of monotherapy and achieves superior treatment against cancer. However, the combinational therapy remains restricted by the poor tumor‐specific delivery and the abscopal effect. Herein, reactive oxygen species (ROS)‐responsive PEGylated bilirubin nanoparticles (BRNPs) are developed to encapsulate two glutathione‐activatable drugs, including dimer‐7‐ethyl‐10‐hydroxycamptothecin (d‐SN38) and dimer‐lonidamine (d‐LND). Dimerization of the drugs significantly increases the drug loading capacity and the encapsulation efficiency of nanoparticles. With the assistance of iRGD peptide (cRGDKGPDC), the cellular uptake of BRNPs is more than double when compared with the control. In response to high levels of intracellular ROS, d‐SN38 and d‐LND are rapidly released from nanoparticles (SL@BRNPs). Furthermore, the pharmacodynamic experiments verify combining SL@BRNPs with anti‐PD‐L1 antibody greatly inhibits the primary tumor of breast cancer, improves CD8+ T cells levels, and CD8+ T cells/Tregs ratios in the tumor. Additionally, it shows high immune memory effect and can prevent the growth of lung metastasis. Taken together, the strategy pioneers a new way for the rational design of nanoassemblies through the combination of activatable drug dimers and stimuli‐responsive drug release, and a successful application of novel drug delivery systems in combination with the immune checkpoint blockade antibody.  相似文献   

2.
Red blood cells (RBCs), the “innate carriers” in blood vessels, are gifted with many unique advantages in drug transportation over synthetic drug delivery systems (DDSs). Herein, a tumor angiogenesis targeting, light stimulus‐responsive, RBC‐based DDS is developed by incorporating various functional components within the RBC platform. An albumin bound near‐infrared (NIR) dye, together with a chemotherapy drug doxorubicin, is encapsulated inside RBCs, the surfaces of which are modified with a targeting peptide to allow cancer targeting. Under stimulation by an external NIR laser, the membrane of the RBCs would be destroyed by the light‐induced photothermal heating, resulting in effective drug release. As a proof of principle, RBC‐based cancer cell targeted drug delivery and light‐controlled drug release is demonstrated in vitro, achieving a marked synergistic therapeutic effect through the combined photothermal–chemotherapy. This work presents a novel design of smart RBC carriers, which are inherently biocompatible, promising for targeted combination therapy of cancer.  相似文献   

3.
Prolonged circulation, specific and effective uptake by tumor cells, and rapid intracellular drug release are three main factors for the drug delivery systems to win the battle against metastatic breast cancer. In this work, a tumor microenvironment‐adaptive nanoparticle co‐loading paclitaxel (PTX) and the anti‐metastasis siRNA targeting Twist is prepared. The nanoparticle consists of a pH‐sensitive core, a cationic shell, and a matrix metalloproteinase (MMP)‐cleavable polyethylene glycol (PEG) corona conjugated via a peptide linker. PEG will be cut away by MMPs at the tumor site, which endows the nanoparticle with smaller particle size and higher positive charge, leading to more efficient cellular uptake in tumor cells and higher intra‐tumor accumulation of both PTX and siRNA in the 4T1 tumor‐bearing mice models compared to the nanoparticles with irremovable PEG. In addition, acid‐triggered drug release in endo/lysosomes is achieved through the pH‐sensitive core. As a result, the MMP/pH dual‐sensitive nanoparticles significantly inhibit tumor growth and pulmonary metastasis. Therefore, this tumor‐microenvironment‐adaptive nanoparticle can be a promising codelivery vector for effective therapy of metastatic breast cancer due to simultaneously satisfying the requirements of long circulating time, efficient tumor cell targeting, and fast intracellular drug release.  相似文献   

4.
In this paper, a plasma membrane engineering approach is reported for tumor targeting drug delivery and contact‐cell‐enhanced photodynamic therapy (“CONCEPT”) by anchoring functionalized conjugates to cell vehicles. The membrane anchoring conjugates are comprised of a positively charged tetra‐arginine peptide sequence, a palmitic‐acid‐based membrane insertion moiety, and a lysine linker whose ε‐amine is modified with camptothecin (CPT), protoporphyrin IX (PpIX), or fluorescein (FAM). The amphipathic CPT, PpIX, or FAM conjugates (short as aCPT, aPpIX, or aFAM, respectively) can easily and steadily anchor or coanchor on the cell membrane of RAW264.7 cells (short as RCs), red blood cells, or mesenchymal stem cells. After anchoring aPpIX in RC cells, the tumor targeting ability and therapeutic effect of aPpIX‐anchored RC cells (short as aPRCs) is demonstrated in vitro and in vivo. Importantly, aPRCs exhibit the “CONCEPT” effect, which can enhance the therapeutic efficacy and reduce side effects at the single cell level. Due to the good tumor‐targeting ability, aPRCs can efficiently inhibit the tumor growth with no systemic toxicity after photoirradiation by photodynamic therapy.  相似文献   

5.
The efficient and specific drug delivery to brain tumor is a crucial challenge for successful systemic chemotherapy. To overcome these limitations, here a tumor‐triggered programmed wormlike micelle is reported with precise targeting and deep penetration to treat malignant gliomas, which is composed of pH‐responsive mPEG‐b‐PDPA copolymer and bioreducible cyclic RGD peptide targeted cytotoxic emtansine (DM1) conjugates (RGD‐DM1). The RGD‐DM1 loaded nanoscaled wormlike micelles (RNW) exhibit nanometer‐sized wormlike assemblies with the transverse diameter of 21.3±1.8 nm and length within 60–600 nm, and the RGD targeting peptide in RNW is 4.2% in weight. RNW can be dissociated at intracellular acidic environments to release RGD‐DM1, and be further degraded into DM1 by cleavage of disulfide bonds in the reductive milieu. In particular, by exploiting the unique wormlike structure and the RGD targeting peptide modification, RNW can be endowed with obviously enhanced drug delivery to brain, precise targeting to brain tumor, deep penetration into tumor mass, and efficient internalization into glioma cells in a programmed manner, thereby surprisingly leading to an 88.9% inhibition on tumor progression in an orthotopic brain tumor model. Therefore, the properly designed RNW can provide a promising delivery platform for systemic chemotherapy of brain tumor.  相似文献   

6.
The cell‐specific targeting drug delivery and controlled release of drug at the cancer cells are still the main challenges for anti‐breast cancer metastasis therapy. Herein, the authors first report a biomimetic drug delivery system composed of doxorubicin (DOX)‐loaded gold nanocages (AuNs) as the inner cores and 4T1 cancer cell membranes (CMVs) as the outer shells (coated surface of DOX‐incorporated AuNs (CDAuNs)). The CDAuNs, perfectly utilizing the natural cancer cell membranes with the homotypic targeting and hyperthermia‐responsive ability to cap the DAuNs with the photothermal property, can realize the selective targeting of the homotypic tumor cells, hyperthermia‐triggered drug release under the near‐infrared laser irradiation, and the combination of chemo/photothermal therapy. The CDAuNs exhibit a stimuli‐release of DOX under the hyperthermia and a high cell‐specific targeting of the 4T1 cells in vitro. Moreover, the excellent combinational therapy with about 98.9% and 98.5% inhibiting rates of the tumor volume and metastatic nodules is observed in the 4T1 orthotopic mammary tumor models. As a result, CDAuNs can be a promising nanodelivery system for the future therapy of breast cancer.  相似文献   

7.
Peptide‐drug conjugates are prodrugs that have the advantages of precise molecular structure and the direct exploitation of tumor‐homing, penetration or the cellular uptake abilities of the peptides such as the neuropilin‐1 receptor targeting peptide. The prodrugs generally have fast blood clearance due to their low molecular weights and thus are made to self‐assemble into nanostructures, preferably nanosized micelles and vesicles for intravenous administration, to slow their renal clearance. However, most peptidyl prodrugs usually form precipitates, irregular nanofibers or gels that are unsuitable for intravenous injection. Herein, a arginine‐glycine‐aspartic acid‐lysine (RGDK) peptide and cytotoxin 7‐ethyl‐10‐hydroxycamptothecin (SN38) are used to synthesize the tumor‐homing prodrugs (SN38‐Peps) and explore their structure–micelle formation relationships. A small library of SN38‐Peps is obtained using different structures of peptides, linkers, and drug conjugation sites, and the factors affecting the assembly of SN38‐Peps as well as the stability of formed micelles are investigated. An optimized SN38‐Pep, (MOM)SN38(20)‐CRGDK, is finally obtained which forms stable micelles with a hydrodynamic diameter around 110 nm and a fixed drug loading content as high as 35%. The micelles show a prolonged blood circulation, significantly enhanced tumor accumulation, and therefore improved anticancer activity as compared to the non‐targeting prodrug and a clinically used anticancer drug.  相似文献   

8.
Efficient delivery of DNA‐toxin anticancer drugs into nucleus of targeted tumor cells while simultaneously minimizing the side effects to normal tissue is a major challenge for cancer therapy. Herein, a multistage continuous targeting strategy based on magnetic mesoporous silica nanoparticles to overcome the challenge is demonstrated. At the initial‐stage, the magnetic nanoparticle is capable of efficiently accumulating in tumor tissue guided by magnet. Following by the magnetic targeting, the targeting ligand gets it right into the cancer cell by receptor‐mediated endocytosis. Accompanied by endocytosis into the lysosomes, the nanoparticle reverses its surface charge from negative to positive which leads to the separation of charge‐conversional polymer from the nanoparticle to re‐expose the nuclear‐targeting TAT peptide. Finally, TAT peptide facilitates the carriers to enter nucleus and the DNA‐toxin camptothecin can inhibit topoisomerase I to induce cell apoptosis. Furthermore, the nano‐drug delivery system can be simultaneously used as predominant contrast agents for magnetic resonance imaging. This proof of concept might open the door to a new generation of carrier materials in the fields of targeted drug transport platform for cancer theranostics.  相似文献   

9.
Metastasis and chemotherapy resistance are the key factors affecting the effectiveness of osteosarcoma (OS) treatments. CXCR1 overexpression is found to be closely related to chemotherapy resistance and anoikis resistance in OS cell subtypes with high metastasis potential. Further study demonstrates that CXCR1 is highly expressed on circulating tumor cell (CTC)‐derived cells with cancer stem cell characteristics. Then, a CXCR1 targeting peptide is designed and synthesized to competitively inhibit the IL‐8/CXCR1 pathway and to improve the cisplatin sensitivity of CTCs. Fluorescence‐labeled magnetic nanoparticles (NPs) with pH‐responsive cisplatin release are fabricated and linked with the CXCR1 targeting peptide (Cis@MFPPC). Results demonstrate that CTC survival could be inhibited effectively by the targeting nanoparticles in vivo. Cis@MFPPC can also inhibit OS growth and pulmonary metastasis in an orthotopic model and patient‐derived tumor xenograft model. This study verifies the clinical significance of CXCR1 as a therapeutic target and provides a drug delivery NP system for precise treatment of OS.  相似文献   

10.
Considering the problems of small interfering RNA (siRNA) delivery using traditional viral and nonviral vehicles, a new siRNA delivery system to enhance efficiency and safety needs to be developed. Here human ferritin‐based proteinticles are genetically engineered to simultaneously display various functional peptides on the surface of proteinticles: cationic peptide to capture siRNA, tumor cell targeting and penetrating peptides, and enzymatically cleaved peptide to release siRNA inside tumor cell. In the in vitro treatment of poly‐siRNA‐proteinticle complex, both of the tumor cell targeting and penetrating peptides are important for efficient delivery of siRNA, and the red fluorescent protein (RFP) expression in RFP‐expressing tumor cells is notably suppressed by the delivered siRNA with the complementary sequence to RFP mRNA. It seems that the human ferritin‐based proteinticle is an efficient, stable, and safe tool for siRNA delivery, having a great potential for application to in vivo cancer treatment. The unique feature of proteinticles is that multiple and functional peptides can be simultaneously and evenly placed and also easily switched on the proteinticle surface through a simple genetic modification, which is likely to make proteinticles appropriate for targeted delivery of siRNA to a wide range of cancer cells.  相似文献   

11.
Nanomedicine constructed by therapeutics has unique and irreplaceable advantages in biomedical applications, especially in drug delivery for cancer therapy. The strategy, however, used to construct the therapeutics‐based nanomedicines with tumor microenvironmental factor responsiveness is still sophisticated. In this study, an easy‐operating procedure is used to construct a therapeutics‐based nanosystem with active tumor‐targeting, enhanced penetration, and stimuli‐responsive drug release behavior as well as programmed cell death‐1/programmed cell death‐ligand 1 (PD‐1/PD‐L1) blockading mediated immunomodulation to enhance tumor immunotherapy. The matrix metalloproteinase‐2 responsive peptide with the existence of Lyp‐1 sequence contributes to the success of active tumor‐targeting and the enhancement of the penetration of the nanoparticles in tumor tissue. The obtained nanosystem strikingly inhibits the primary tumor growth in the first 24 h (more than 97.5% of tumor cells are inhibited), and total inhibition can be achieved with the combination of photothermal therapy. IR820, which is served as the carrier for the therapeutics, is used as a photosensitizer for photothermal therapy. The progress and aggression of distal tumor has further been alleviated by a d ‐peptide which is an antagonist for PD‐1/PD‐L1 blockage. Therefore, a therapeutics‐constructed multifunctional nanosystem is provided to realize a combinational therapeutic strategy to enhance the therapeutic outcome.  相似文献   

12.
A novel drug‐formulation protocol is developed to solve the delivery problem of hydrophobic drug molecules by using inorganic mesoporous silica nanocapsules (IMNCs) as an alternative to traditional organic emulsions and liposomes while preserving the advantages of inorganic materials. The unique structures of IMNCs are engineered by a novel fluoride‐silica chemistry based on a structural difference‐based selective etching strategy. The prepared IMNCs combine the functions of organic nanoemulsions or nanoliposomes with the properties of inorganic materials. Various spherical nanostructures can be fabricated simply by varying the synthetic parameters. The drug loading amount of a typical highly hydrophobic anticancer drug‐camptothecin (CPT) in IMNCs reaches as high as 35.1 wt%. The intracellular release of CPT from carriers is demonstrated in situ. In addition, IMNCs can play the role of organic nanoliposome (multivesicular liposome) in co‐encapsulating and co‐delivering hydrophobic (CPT) and hydrophilic (doxorubicin, DOX) anticancer drugs simultaneously. The co‐delivery of multi‐drugs in the same carrier and the intracellular release of the drug combinations enables a drug delivery system with efficient enhanced chemotherapeutic effect for DOX‐resistant MCF‐7/ADR cancer cells. The special IMNCs‐based “inorganic nanoemulsion”, as a proof‐of‐concept, can also be employed successfully to encapsulate and deliver biocompatible hydrophobic perfluorohexane (PFH) molecules for high intensity focused ultrasound (HIFU) synergistic therapy ex vivo and in vivo. Based on this novel design strategy, a wide range of inorganic material systems with similar “inorganic nanoemulsion or nanoliposome” functions will be developed to satisfy varied clinical requirements.  相似文献   

13.
The poor drug delivery to primary and metastatic tumors of breast cancer remains a great challenge for effective antimetastasis therapy. Herein, a tumor microenvironment‐activated cabazitaxel micelles decorated with legumain‐specific melittin (TCM‐legM) are rationally designed for programed targeting of breast cancer metastasis. TCM‐legM is quiescent in blood circulation, but can be specifically activated by the highly expressed legumain in tumor microenvironments to improve their specific targeting and deep penetrating to primary or metastatic tumors. Thereafter, the activated TCM‐legM can be efficiently internalized by cancer cells and motivate the rapid pH‐responsive drug release for antimetastasis therapy. In metastatic 4T1 breast cancer cells, TCM‐legM presents significant inhibition on the proliferation, migration, and invasion activities. In vivo, TCM‐legM can be effectively delivered to both primary and metastatic tumors of breast cancer with deep tumor penetration and efficient cellular internalization, thereby resulting in a notable reduction of tumor growth and producing a 93.4% suppression of lung metastasis. Taken together, the rationally designed TCM‐legM can provide an intelligent drug delivery strategy to enhance the medical performance on treating breast cancer metastasis.  相似文献   

14.
Selective targeting of tumor cells and release of drug molecules inside the tumor microenvironment can reduce the adverse side effects of traditional chemotherapeutics because of the lower dosages required. This can be achieved by using stimuli‐responsive targeted drug delivery systems. In the present work, a robust and simple one‐pot route is developed to synthesize polymer‐gatekeeper mesoporous silica nanoparticles by noncovalent capping of the pores of drug‐loaded nanocontainers with disulfide cross‐linkable polymers. The method offers very high loading efficiency because chemical modification of the mesoporous nanoparticles is not required; thus, the large empty pore volume of pristine mesoporous silica nanoparticles is entirely available to encapsulate drug molecules. Furthermore, the polymer shell can be easily decorated with a targeting ligand for selective delivery to specific cancer cells by subsequent addition of the thiol‐containing ligand molecule. The drug molecules loaded in the nanocontainers can be released by the degradation of the polymer shell in the intracellular reducing microenvironment, which consequentially induces cell death.  相似文献   

15.
Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future.  相似文献   

16.
17.
Nanocarriers capable of circumventing various biological barriers between the site of administration and the therapeutic target hold great potential for cancer treatment. Herein, a redox‐sensitive, hyaluronic acid‐decorated graphene oxide nanosheet (HSG) is developed for tumor cytoplasm‐specific rapid delivery using near‐infrared (NIR) irradiation controlled endo/lysosome disruption and redox‐triggered cytoplasmic drug release. Hyaluronic acid (HA) modification through redox‐sensitive linkages permits HSG a range of advantages over the standard graphene oxide, including high biological stability, enhanced drug‐loading capacity for aromatic molecules, HA receptor‐mediated active tumor targeting, greater NIR absorption and thermal energy translation, and a sharp redox‐dependent response for accelerated cargo release. Results of in vivo and in vitro testing indicate a high loading of doxorubicin (DOX) onto HSG. Selective delivery to HA‐receptor overexpressing tumors is achieved through passive and active targeting with minimized unfavorable interactions with blood components. Cytoplasm‐specific DOX delivery is then achieved through NIR controlled endo/lysosome disruption along with redox‐triggered release of DOX in glutathione rich areas. HSG's specificity is resulted in enhanced cytotoxicity of chemotherapeutics with minimal collateral damage to healthy tissues in a xenograft animal tumor model. HSG is validated the programmed delivery of therapeutic agents in a spatiotemporally controlled manner to overcome multiple biological barriers results in specific and enhanced cancer treatment.  相似文献   

18.
The rational design of cancer‐targeted and bioresponsive drug delivery vehicles can enhance the anticancer efficacy of conventional chemotherapeutics and reduce their adverse side effects. However, the complexity of precise delivery and the ability to trigger drug release in specific tumor sites remain a challenging puzzle. Here, a sequentially triggered nanosystem composed of HER2 antibody with disulfide linkage as a surface decorator (HER2@NPs) is constructed for precise drug delivery and the simultaneous inhibition of cancer growth, migration, and invasion. The nanosystem actively accumulates in cancer cells, undergoes self‐immolative cleavage in response to biological thiols, and is degraded to form small nanoparticles. After internalization by receptor‐mediated endocytosis, the nanoparticles further disassemble under acidic conditions in the presence of lysozymes and cell lysates, leading to sequentially triggered drug release. The released payload triggers overproduction of reactive oxygen species and activates p53 and MAPKs pathways to induce cancer cell apoptosis. Moreover, HER2@NPs markedly suppress the migration and invasion of human bladder cancer cells at nontoxic concentrations. HER2@NPs demonstrate potent in vivo anticancer efficacy, but show no obvious histological damage to the major organs. Taken together, this study provides a valid tactic for the rational design of sequentially triggered nanosystems for precise drug delivery and cancer therapy.  相似文献   

19.
DNA‐toxin anticancer drugs target nuclear DNA or its associated enzymes to elicit their pharmaceutical effects, but cancer cells have not only membrane‐associated but also many intracellular drug‐resistance mechanisms that limit their nuclear localization. Thus, delivering such drugs directly to the nucleus would bypass the drug‐resistance barriers. The cationic polymer poly(L ‐lysine) (PLL) is capable of nuclear localization and may be used as a drug carrier for nuclear drug delivery, but its cationic charges make it toxic and cause problems in in‐vivo applications. Herein, PLL is used to demonstrate a pH‐triggered charge‐reversal carrier to solve this problem. PLL's primary amines are amidized as acid‐labile β‐carboxylic amides (PLL/amide). The negatively charged PLL/amide has a very low toxicity and low interaction with cells and, therefore, may be used in vivo. But once in cancer cells' acidic lysosomes, the acid‐labile amides hydrolyze into primary amines. The regenerated PLL escapes from the lysosomes and traverses into the nucleus. A cancer‐cell targeted nuclear‐localization polymer–drug conjugate has, thereby, been developed by introducing folic‐acid targeting groups and an anticancer drug camptothecin (CPT) to PLL/amide (FA‐PLL/amide‐CPT). The conjugate efficiently enters folate‐receptor overexpressing cancer cells and traverses to their nuclei. The CPT conjugated to the carrier by intracellular cleavable disulfide bonds shows much improved cytotoxicity.  相似文献   

20.
Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery were prepared from an environmentally‐sensitive graft copolymer, poly(N‐isopropyl acrylamide‐co‐methacryl acid)‐g‐poly(D ,L ‐lactide) (P(NIPAAm‐co‐MAAc)‐g‐PLA), a diblock copolymer, methoxy poly(ethylene glycol)‐b‐poly(D ,L ‐lactide) (mPEG‐PLA) and two functionalized diblock copolymers, galactosamine‐PEG‐PLA (Gal‐PEG‐PLA) and fluorescein isothiocyanate‐PEG‐PLA (FITC‐PEG‐PLA). Anticancer drug, free base doxorubicin (Dox) was incorporated into the inner core of multifunctional micelles by dialysis. From the drug release study, a change in pH (from pH 7.4 to 5.0) deformed the structure of the inner core from that of aggregated P(NIPAAm‐co‐MAAc), causing the release of a significant quantity of doxorubicin (Dox) from multifunctional micelles. Multifunctional micelles target specific tumors by an asialoglycoprotein (HepG2 cells)‐Gal (multifunctional micelle) receptor‐mediated tumor targeting mechanism. This mechanism then causes intracellular pH changes which induce Dox release from multifunctional micelles and that micelles have strong effects on the viability of HepG2 cells and are abolished by galactose. Confocal laser scanning microscopy (CLSM) reveals a clear distribution of multifunctional micelles. With careful design and sophisticated manipulation, polymeric micelles can be widely used in cancer diagnosis, cancer targeting, and cancer therapy simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号