首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead halide perovskites (LHPs) have been widely investigated in photodetection applications owing to their intriguing optoelectronic properties. However, the application of LHPs-based photodetectors (PDs) is hindered because of the toxicity of lead and instability in ambient air. Here, an air-stable self-powered photodetector is designed based on all-inorganic lead-free CsBi3I10/SnO2 heterojunction. The device exhibits broad spectral response in both UV and visible light, fast response on µs scale, and decent long-term stability. The device holds a faster response speed (tr/td = 7.8/8.8 µs), among the best reported self-powered lead-free perovskites photodetectors. More importantly, the device can display obvious photoresponses even under ultra-weak light intensity as low as 10 pW cm–2, showing better weak-light sensitivity than previously reported lead-free perovskites photodetectors, to the best of our knowledge. Moreover, the device holds good air stability in the 73 days test without encapsulation. These results suggest that CsBi3I10/SnO2-based self-powered PDs with high photodetection capability possess enormous potential in stable and broadband PDs for weak light detection in the future.  相似文献   

2.
The development of an efficient fabrication route to achieve high-resolution perovskite pixel array is key for large-scale flexible image sensor devices. Herein, a high-resolution and stable 10 × 10 flexible PDs array based on formamidinium(FA+) and phenylmethylammonium (PMA+) quasi-2D (PMA)2FAPb2I7 (n = 2) perovskite is demonstrated by developing SiO2-assisted hydrophobic and hydrophilic treatment process on polyethylene terephthalate substrate. By introducing Au nanoparticles (Au NPs),  the perovskite film quality is improved and grain boundaries are reduced. The mechanism by which Au NPs upgrade the photoelectric quality of perovskite is mainly revealed by glow discharge-optical emission spectroscopy (GD-OES) and grazing-incidence wide-angle X-ray scattering (GIWAXS). To further improve the photoelectric performance of the devices, a post-treatment strategy with formamidinium chloride (FACl) is used . The optimized flexible PDs arrays show excellent optoelectronic properties with a high responsivity of 4.7 A W−1, a detectivity of 6.3 × 1012 Jones, and a broad spectral sensitivity. The device also exhibits excellent electrical stability even under severe bending and excellent flexural strength, as well as excellent environmental stability. Finally, the integrated flexible PDs arrays are used as sensor pixels in an imaging system to obtain high-resolution imaging patterns, demonstrating the imaging capability of the PDs arrays.  相似文献   

3.
Single crystal metal halide perovskites thin films are considered to be a promising optical, optoelectronic materials with extraordinary performance due to their low defect densities. However, it is still difficult to achieve large-scale perovskite single-crystal thin films (SCTFs) with tunable bandgap by vapor-phase deposition method. Herein, the synthesis of CsPbCl3(1–x)Br3x SCTFs with centimeter size (1 cm × 1 cm) via vapor-phase deposition is reported. The Br composition of CsPbCl3(1–x)Br3x SCTFs can be gradually tuned from x = 0 to x = 1, leading the corresponding bandgap to change from 2.29 to 2.91 eV. Additionally, an low-threshold (≈23.9 µJ cm−2) amplified spontaneous emission is achieved based on CsPbCl3(1–x)Br3x SCTFs at room temperature, and the wavelength is tuned from 432 to 547 nm by varying the Cl/Br ratio. Importantly, the high-quality CsPbCl3(1–x)Br3x SCTFs are ideal optical gain medium with high gain up to 1369.8 ± 101.2 cm−1. This study not only provides a versatile method to fabricate high quality CsPbCl3(1–x)Br3x SCTFs with different Cl/Br ratio, but also paves the way for further research of color-tunable perovskite lasing.  相似文献   

4.
Facing the future development trend of miniaturization and intelligence of electronic devices, solar-blind photodetectors based on ultrawide-bandgap 2D semiconductors have the advantages of low dark current, and high signal-to-noise ratio, as well as the features of micro-nanometer miniaturization and multi-functionalization of 2D material devices, which have potential applications in the photoelectric sensor part of high-performance machine vision systems. This study reports a 2D oxide semiconductor, AsSbO3, with an ultrawide bandgap (4.997 eV for monolayer and 4.4 eV for multilayer) to be used to fabricate highly selective solar-blind UV photodetectors, of which the dark current as low as 100 fA and rejection ratio of UV-C and UV-A reaches 7.6 × 103. Under 239 nm incident light, the responsivity is 105 mA W−1 and the detectivity is 7.58 × 1012 Jones. Owing to the remarkable anisotropic crystal structure, AsSbO3 also shows significant linear dichroism and nonlinear optical properties. Finally, a simple machine vision system is simulated by combining the real-time imaging function in solar-blind UV with a convolutional neural network. This study enriches the material system of ultrawide-bandgap 2D semiconductors and provides insight into the future development of high-performance solar-blind UV optoelectronic devices.  相似文献   

5.
Lead‐free perovskite materials are exhibiting bright application prospects in photodetectors (PDs) owing to their low toxicity compared with traditional lead perovskites. Unfortunately, their photoelectric performance is constrained by the relatively low charge conductivity and poor stability. In this work, photoresponsive transistors based on stable lead‐free bismuth perovskites CsBi3I10 and single‐walled carbon nanotubes (SWCNTs) are first reported. The SWCNTs significantly strengthen the dissociation and transportation of the photogenerated charge carriers, which lead to dramatically improved photoresponsivity, while a decent Ilight/Idark ratio over 102 can be maintained with gate modulation. The devices exhibit high photoresponsivity (6.0 × 104 A W?1), photodetectivity (2.46 × 1014 jones), and external quantum efficiency (1.66 × 105%), which are among the best reported results in lead‐free perovskite PDs. Furthermore, the excellent stability over many other lead‐free perovskite PDs is demonstrated over 500 h of testing. More interestingly, the device also shows the application potential as a light‐stimulated synapse and its synaptic behaviors are demonstrated. In summary, the lead‐free bismuth perovskite‐based hybrid phototransistors with multifunctional performance of photodetection and light‐stimulated synapse are first demonstrated in this work.  相似文献   

6.
Weak-light imaging holds immense significance in various imaging applications. Recently, there has been significant research focused on 2D perovskites for photodetectors (PDs), owing to their superior photoelectric properties. However, the utilization of 2D perovskites for high-performance weak-light detection remains limited, and there is a notable absence of demonstration in weak-light ultraviolet (UV) imaging. Herein, a high-sensitive UV detectors with an ultra-low detection limit for weak-light imaging are demonstrated, utilizing 2D perovskite (PA)2PbBr4 (PPB) single crystals (SCs). Leveraging the exceptional quality of SCs, the PPB-based PD exhibits outstanding operational performances, including a low dark current of 0.735 pA, high on/off ratio of 4150 under 263.3 mW cm−2 illimitation,  and extensive linear dynamic range of 153.61 dB, which is currently the highest reported value among 2D perovskite SC detectors. Notably, PPB PDs demonstrate a remarkable response under 5.49 nW cm−2 illumination, enabling it to exhibit outstanding photo-response with an excellent detectivity of 2.3 × 1013 Jones and responsivity of 2.22 A W−1. Importantly, high-resolution images are successfully obtained under weak-light illumination. These findings underscore the immense potential of 2D perovskite for UV weak-light imaging.  相似文献   

7.
2D materials, represented by transition metal dichalcogenides (TMDs), have attracted tremendous research interests in photoelectronic and electronic devices. However, for their relatively small bandgap (<2 eV), the application of traditional TMDs into solar‐blind ultraviolet (UV) photodetection is restricted. Here, for the first time, NiPS3 nanosheets are grown via chemical vapor deposition method. The nanosheets thinning to 3.2 nm with the lateral size of dozens of micrometers are acquired. Based on the various nanosheets, a linearity is found between the Raman intensity of specific Ag modes and the thickness, providing a convenient method to determine their layer numbers. Furthermore, a UV photodetector is fabricated using few‐layered 2D NiPS3 nanosheets. It shows an ultrafast rise time shorter than 5 ms with an ultralow dark current less than 10 fA. Notably, this UV photodetector demonstrates a high detectivity of 1.22 × 1012 Jones, outperforming some traditional wide‐bandgap UV detectors. The wavelength‐dependent photoresponsivity measurement allows the direct observation of an admirable cut‐off wavelength at 360 nm, which indicates a superior spectral selectivity. The promising photodetector performance, accompanied with the controllable fabrication and transfer process of nanosheet, lays the foundation of applying 2D semiconductors for ultrafast UV light detection.  相似文献   

8.
In the present work, high‐performance photodetectors (PDs) based on a single B‐doped 3C‐SiC nanobelt, which are synthesized via catalyst‐free pyrolysis of polymeric precursors of polysilazane, are reported. The as‐built PDs have a high responsivity and external quantum efficiency of 6.37 × 105 A · W?1 and 2.0 × 108% under 405 nm light with a power density of 0.14 mW · cm?2 at 5 V, respectively. The detectivity of the PDs is measured to be of 6.86 × 1014 Jones. Moreover, the B‐doped 3C‐SiC nanobelt PDs exhibit a long‐term stability against 300 °C up to 180 days, suggesting their promising applications to be served under harsh conditions.  相似文献   

9.
ZnPc single-crystal nanobelts were grown by a physical vapor transport process with the length ranging from 20 to 150 μm and the width ranging from several tens of nanometers to several micrometers. Based on high crystalline ZnPc nanobelts, its single-crystal nanobelt transistors were realized. The field-effect mobility is as high as 0.75 cm2V−1s−1 with OTS modified SiO2 as dielectric, which is the highest value for the reported ZnPc devices. In addition, ZnPc nanobelt transistors show the excellently photosensitive properties with the high photoswitching ratio (|Ilight/Idark|) of 7.34 × 103 and the high photoresponsivity at 1.57 × 104 AW−1. These results indicate the future potential of ZnPc single-crystal transistors in organic electronic and optoelectronic applications.  相似文献   

10.
The high temperature performance plays a crucial role in the high-temperature harsh environment detection. In this paper, the electrical and optical characteristics of 4H-SiC metal-semiconductor-metal (MSM) ultraviolet photodiodes (PDs) were investigated at high temperatures. The C-V measurement indicates that the 4H-SiC Schottky barrier diode is partially depleted at 40 V bias. Analysis of I-V data based on the thermionic emission theory demonstrates that the annealing treatment at 400 °C can effectively improve the homogeneity of Ni/4H-SiC Schottky barrier height. Experimental results confirm that the annealing treatment is beneficial not only to reduce the dark current and improve the photoresponse, but also to enhance the sensitivity for 4H-SiC MSM PDs. The sensitivity of 400 °C annealed MSM PDs (6.2 × 103) is five times larger than that of as-deposited MSM PDs (1.3 × 103) at 200 °C.  相似文献   

11.
Sensitivity and detection limit of X-ray detectors are crucial for security checks, medical diagnoses, and industrial inspections. In this study, it is reported that introducing some cations containing lone-pair electrons is beneficial for enhancing the Compton scattering effect and thus improving X-ray detection performance. As an example, SnTe3O8 is selected and grown as a novel high-temperature X-ray detection crystal. Because of the high resistivity of 2 × 1014 Ω cm and high mobility lifetime product of 3.22 × 10−4 cm2 V−1, SnTe3O8 X-ray detector exhibits a high sensitivity of 436 µC Gyair−1 cm−2 under 120 keV hard X-ray, a low dark current drift of 2.44 × 10−9 nA cm−1 s−1 V−1 and a record low detection limit of 8.19 nGyair s−1 among all oxide X-ray detectors. Furthermore, the high-temperature sensitivity of SnTe3O8 X-ray detector is enhanced to 617 µC Gyair−1 cm−2 at 175 °C, which is ≈31 times larger than that of the commercial α-Se. The high thermal stability and stable high-temperature sensitivity of SnTe3O8 single crystal X-ray detectors have potential applications in high-temperature environments. The results not only provide an excellent high-temperature X-ray detection crystal but also propose an effective method to explore X-ray detector materials with excellent performances.  相似文献   

12.
Metal halide perovskite microwires (MWs) have emerged as promising photoactive materials for highly efficient photodetectors (PDs). However, large-scale MWs film fabrication is still a formidable challenge for achieving integration compatible perovskite PDs arrays, owing to precipitation and structure crushing of MWs during deposition and annealing. Herein, a strategy of fabrication of inch-scale perovskite MWs films is presented by depositing perovskite intermediate suspension through spray-coating, which addresses the trade-off present between the high flatness of MWs film and its large-scale fabrication. The single crystalline perovskite MWs weave a film with high enough flatness rendering narrow performance distribution of high efficiency on the 7 × 7 PDs arrays. The formamidinium lead iodide (FAPbI3) PDs arrays show average responsivity and detectivity of (1.60 ± 0.46) A W−1 and (1.49 ± 0.50) × 1012 Jones. The methanaminium lead iodide (MAPbI3) PDs arrays show average responsivity and detectivity of (0.065 ± 0.046) A W−1 and (2.54 ± 0.77) × 1011 Jones. The champion PDs based on FAPbI3 MWs film and MAPbI3 MWs film show detectivity of 1.26 × 1013 and 9.67 × 1011 Jones, which are much higher than that of corresponding polycrystalline films and located on the top ranking of similar devices.  相似文献   

13.
Sodium-based complex hydrides have recently gained interest as electrolytes for all-solid-state batteries due to their light weight and high electrochemical stability. Although their room temperature conductivities are not sufficiently high for battery application, nanocomposite formation with metal oxides has emerged as a promising approach to enhance the ionic conductivity of complex hydrides. This enhancement is generally attributed to the formation of a space charge layer at the hydride-oxide interface. However, in this study it is found that the conductivity enhancement results from interface reactions between the metal hydride and the oxide. Highly conductive NaBH4 and NaNH2/oxide nanocomposites are obtained by optimizing the interface reaction, which strongly depends on the interplay between the surface chemistry of the oxides and the reactivity of the metal hydrides. Notably, for NaBH4, the best performance is obtained with Al2O3, while NaNH2/SiO2 is the most conductive NaNH2/oxide nanocomposite with conductivities of, respectively, 4.7 × 10−5 and 2.1 × 10−5 S cm−1 at 80 °C. Detailed structural characterization reveals that this disparity originates from the formation of different tertiary interfacial compounds, and is not only a space charge effect. These results provide useful insights for the preparation of highly conductive nanocomposite electrolytes by optimizing interface interactions.  相似文献   

14.
Infrared (IR) photodetection is important for light communications, military, agriculture, and related fields. Organic transistors are investigated as photodetectors. However, due to their large band gap, most organic transistors can only respond to ultraviolet and visible light. Here high performance IR phototransistors with ternary semiconductors of organic donor/acceptor complex and semiconducting single-walled carbon nanotubes (SWCNTs), without deep cooling requirements are developed. Due to both the ultralow intermolecular electronic transition energy of the complex and charge transport properties of SWCNTs, the phototransistor realizes broadband photodetection with photoresponse up to 2600 nm. Moreover, it exhibits outstanding performance under 2000 nm light with photoresponsivity of 2.75 × 106 A W−1, detectivity of 3.12 × 1014 Jones, external quantum efficiency over 108%, and high Iphoto/Idark ratio of 6.8 × 105. The device exhibits decent photoresponse to IR light even under ultra-weak light intensity of 100 nW cm−2. The response of the phototransistor to blackbody irradiation is demonstrated, which is rarely reported for organic phototransistors. Interestingly, under visible light, the device can also be employed as synaptic devices, and important basic functions are realized. This strategy provides a new guide for developing high performance IR optoelectronics based on organic transistors.  相似文献   

15.
Semiconductors based on Bi element show large attenuation coefficients to X-ray photons and have been recognized as candidates for X-ray detectors. However, the application of stable Bi-based oxide materials to X-ray detectors has been rarely investigated. In this research, the X-ray response of a BiVO4 pellet has been studied. It has been found that the BiVO4 pellet has a large resistivity of 1.3 × 1012 Ω cm, negligible current drift of 6.18 × 10−8 nA cm−1 s−1 V−1 under electrical bias and mobility lifetime product, µτ, of 1.75 × 10−4 cm2 V−1, which renders the pellet with an X-ray sensitivity of 241.3 µC Gyair−1 cm−2 and a detection limit of 62 nGyair s−1 under 40 KVp X-ray illumination and 40 V bias voltage. The BiVO4 pellet also shows operational stability under steady X-ray illumination with total dose of 2.01 Gyair, equal to the dose of 20 000 medical chest X-ray inspections. This research reveals the potential application of BiVO4 in X-ray detection devices and inspires further research in this area.  相似文献   

16.
An efficient ferroelectric‐enhanced side‐gated single CdS nanowire (NW) ultraviolet (UV) photodetector at room temperature is demonstrated. With the ultrahigh electrostatic field from polarization of ferroelectric polymer, the depletion of the intrinsic carriers in the CdS NW channel is achieved, which significantly reduces the dark current and increases the sensitivity of the UV photodetector even after the gate voltage is removed. Meanwhile, the low frequency noise current power of the device reaches as low as 4.6 × 10?28 A2 at a source‐drain voltage Vds = 1 V. The single CdS NW UV photodetector exhibits high photoconductive gain of 8.6 × 105, responsivity of 2.6 × 105 A W?1, and specific detectivity (D*) of 2.3 × 1016 Jones at a low power density of 0.01 mW cm?2 for λ = 375 nm. In addition, the spatially resolved scanning photocurrent mapping across the device shows strong photocurrent signals near the metal contacts. This is promising for the design of a controllable, high‐performance, and low power consumption ultraviolet photodetector.  相似文献   

17.
Photoexcited pyroelectricity in ferroelectrics allows the direct conversion of light radiation into electric signal without external power source, thus paving an avenue to promote optoelectronic device performances. However, it is urgently demanded to exploit new ferroelectrics with this attribute covering ultraviolet (UV)-to-infrared (IR) region for self-powered photodetection. Herein, broadband light-induced pyroelectric effects in a new 2D perovskite-type ferroelectric, (BBA)2(EA)2Pb3Br10 (1; BBA = p-bromobenzylammonium, EA = ethylammonium), showing a high Curie temperature of 425 K and notable pyroelectric coefficient (≈5.4 × 10−3 µC cm−2 K−1) is presented. Especially, photo-induced change of its electric polarization leads to ultraviolet-to-infrared pyroelectricity in a wide spectral region (377–1950 nm). Broadband photoactivities actualized by this property break the limitation of its optical bandgap. Thus, single-crystal detectors of 1 are sensitive to UV-to-IR light with a small temperature fluctuation of 0.3 K, exhibiting a high transient responsivity up to ≈0.28 mA W−1 and specific detectivity of 1.31 × 1010 Jones under zero bias (at 405 nm); such figure-of-merits are beyond than those self-powered photodetectors using oxide ferroelectrics. It is anticipated that the findings of light-induced pyroelectricity afford a feasible strategy to assemble newly-conceptual smart photoelectric devices, such as self-powered broadband detectors.  相似文献   

18.
Due to its unique band structure and topological properties, the 2D topological semimetal exhibits potential applications in photoelectric detection, polarization sensitive imaging, and Schottky barrier diodes. However, its inherent large dark current hinders the further improvement of the performance of the semimetal-based photodetectors. In this study, a van der Waals (vdWs) field effect transistor (FET) composed of semimetal PdTe2 and transition metal dichalcogenides (TMDs) WSe2 is fabricated, which exhibits high sensitivity photoelectric detection performance in a wide band from visible light (405 nm) to mid-infrared (5 µm). The dark current and the noise level in the device are greatly suppressed by the effective control of the gate. Benefiting from the extremely low dark current (1.2 pA), the device achieves an optical on/off ratio up to 106, a high detectivity of 9.79 × 1013 Jones and a rapid response speed (219 and 45 µs). This research demonstrates the latent capacity of the 2D topological semimetal/TMDs vdWs FET for broadband, high-performance, and miniaturized photodetection.  相似文献   

19.
BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector (PD) with high performance is fabricated by a facile anodization process and an impregnation method. The heterojunction at the interface and the internal electric fields in the BiOCl nanosheets faciliate the separation of photogenerated charge carriers and regulate the transportation of the electrons. Compared with the large dark current (≈10?5 A), low on/off ratio (8.5), and slow decay time (>60 s) of the TiO2 PD, the optimized heterojunction PD (6‐BiOCl–TiO2) yields dramatically decreased dark current (≈1 nA), ultrahigh on/off ratio (up to 2.2 × 105), and fast decay speed (0.81 s) under 350 nm light illumination at ?5 V. Moreover, it exhibits an increased responsivity of 41.94 A W?1, a remarkable detectivity (D*) of 1.41 × 1014 Jones, and a high linear dynamic range of 103.59 dB. The loading amount and growth orientations of the BiOCl nanosheets alter the roles of the self‐induced internal electric field in regulating the behaviors of the charge carriers, thus affecting the photoelectric properties of the heterojunction PDs. These results demonstrate that rational construction of novel heterojunctions hold great potentials for fabricating photodetectors with high performance.  相似文献   

20.
Flexible and air-stable phototransistors are highly demanded for wearable near-infrared (NIR) image sensors. However, advanced NIR sensors via low-cost, solution-based processes remained a challenge. Herein, high-performance inorganic–organic hybrid phototransistors are achieved based on solution processed n-type metal oxide/polymer semiconductor heterostructures of In2O3/poly{5,5′-bis[3,5-bis(thienyl)phenyl]-2,2′-bithiophene-3-ethylesterthiophene]} (PTPBT-ET). The In2O3/PTPBT-ET hybrid phototransistor combines the advantages of both fast electron transport in In2O3 and high photoresponse in PTPBT-ET, showing high saturation mobility of 7.1 cm2 V−1 s−1 and large current on/off ratio of >107. As a result, the phototransistor exhibits high performance towards NIR light sensing with a responsivity of 200 A W−1, a specific detectivity of 1.2 × 1013 Jones, and fast photoresponse with rise/fall time of 5/120 ms. Remarkably, the hybrid phototransistor, without any passivation, demonstrates excellent electrical stability without performance degradation even after 160 days in air. A 10 × 10 phototransistor array is also enabled by virtue of the high device uniformity. Lastly, flexible In2O3/PTPBT-ET phototransistor on polyimide substrate is attained, exhibiting outstanding mechanical flexibility up to 1000 bending/releasing cycles at a bending radius of 5 mm. These achievements pave the way for constructing air-stable hybrid phototransistors for flexible NIR image sensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号