首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a fast and reliable fabrication method of dense, periodic and high aspect ratio PMMA and metallic nanostructures. Biased lines are directly exposed by a 100 keV electron beam in thick layers of polymethyl-methacrylate (PMMA) resist to produce polymer mold which is later used to grow Au high aspect ratio structures by electroplating. Dense PMMA and Au nanostructures with aspect ratios >11 were manufactured in 520 nm and with aspect ratios >12 in ~1 μm thick layers of PMMA. This method was successfully applied to produce various X-ray optics devices, such as beam shaping condensers, Fresnel zone plates and diffraction gratings. The performance of a beam shaper was tested at 10 keV photon energy showing a good diffraction efficiency of 10%.  相似文献   

2.
There is growing interest in the use of chemically-amplified resists (CARs) such as SU-8 in the field of microelectromechanical systems (MEMS) research. This is due to its outstanding lithographic performance and its ability for use in the fabrication of stable structures with very high aspect ratio. However, it is important to control the processing conditions for optimum results in the desired application. In this investigation, the thickness (10-25 μm) of SU-8 resist film, due to different spin coating speeds on silicon wafers, was measured using Fourier transform infrared (FT-IR) spectroscopy. The effect of thermal-initiated cross-linking at various temperatures (95-160 °C) for 15 min baking time on the 25 μm SU-8 resist was studied by monitoring the 914 cm−1 absorption peak in the FT-IR spectrum. Results of the experiments showed that the onset of thermal-initiated cross-linking begins at about 120 °C. Furthermore, 25 μm SU-8 resist was optimized for X-ray lithographic applications by studying the cross-linking process of the resist under different conditions of post-exposure bake (PEB) temperatures. The exposure dose of soft X-ray (SXR) irradiation with energies about 1 keV from a dense plasma focus (DPF) device was fixed at 2500 mJ/cm2 on the resist surface. Results showed that the optimum processing conditions consisted of an intermediate PEB at 65 °C for 5 min, with the PEB temperature ramped up to 95 °C over 1.5 min and then followed by a final PEB at 95 °C for 5 min. The scanning electron microscopy (SEM) images showed SU-8 test structures successfully imprinted, without affecting the resolution, and with aspect ratios of up to 20:1 on 25 μm SU-8 resist.  相似文献   

3.
Platinum zone plates for hard X-ray applications   总被引:1,自引:0,他引:1  
We describe the fabrication and evaluation of platinum zone plates for 5-12 kV X-ray imaging and focusing. These nano-scale circular periodic structures are fabricated by filling an e-beam generated mold with Pt in an electroplating process. The plating recipe is described. The resulting zone plates, having outer zone widths of 100 and 50 nm, show good uniformity and high aspect ratio. Their diffraction efficiencies are 50-70% of the theoretical, as measured at the European Synchrotron Radiation Facility. Platinum shows promise to become an attractive alternative to present hard X-ray zone plate materials due to its nano-structuring properties and the potential for zone-plate operation at higher temperatures.  相似文献   

4.
Real-time in vivo detection of cancer via attenuation-based plain X-ray imaging is proposed to fundamentally overcome the penetration depth limits of current fluorescence-based imaging techniques. Using cesium lead bromide (CsPbBr3, CPB) quantum dot (QD) scintillators, real-time X-ray detection of 5 mm-sized Panc-1 cell tumors grown in a mouse is successfully performed. The QDs are rapidly co-synthesized and double-encapsulated with silicon dioxide (SiO2) to completely prevent them from being aggregated, decomposed, or released; they are then conjugated with antibodies to target pancreatic cancer. Due to the dramatic X-ray attenuation, the X-ray signal from the CPB QDs placed under the 2 cm-thick tissue is clearly observed, while their fluorescence signal is not detected at all. In in vivo mouse experiments, the injection of a tiny amount (2.8 μg on a QD basis) of the CPB–SiO2@SiO2–Ab nanoparticles gives rise to a bright spot at the location of the tumor. Cell viability assay and histological analysis confirm the biocompatibility and nontoxicity of the nanoparticles.  相似文献   

5.
A projection X-ray microscope has been constructed by modifying a scanning electron microscope (HITACHI S-2500CX). Characteristic internal structures and their changes in an aphid, a fly, an ant, a water bear and a beetle are observed first, non-destructively, by X-ray microscope. Stereo-pair X-ray micrographs of Golgi-stained sections of porcine liver show a network of bile canaliculi and stellate cells. The very clear micrographs presented indicate the usefulness of the microscope in studies of entomology and histology. In some micrographs, very thin whiskers or hairs are visible, which suggests that a phase-contrast effect is present in the imaging. X-ray micrographs of an ant hair taken at various distances between the X-ray source and the specimen, D(s), indicate that the image enhancement due to the phase contrast increases with increasing D(s). Degree of the lateral coherence of X-rays of wave length 0.1 nm is theoretically estimated near the hair, with the result that the coherence increases from about zero (almost complete incoherence) at D(s) = 0.1 mm to about unity (almost complete coherence) at D(s) = 6 mm, in agreement with the observation.  相似文献   

6.
Scintillators with high light yield, low detection limit, large X-ray attenuation efficiency as well as stable and nontoxic compositions are of great importance for radiation detection applications. Here, 0D (C8H20N)2Cu2Br4 single crystals are obtained and show blue emission peaking at 468 nm with a near-unity photoluminescence quantum yield of 99.7%, a large Stokes shift of 148 nm (i.e., negligible self-absorption), and a good environmental stability along with strong X-ray absorption capability. Moreover, a high light yield of up to ≈ 91 300 photons/MeV and a low detection limit of 52.1 nGyair s−1 are realized, which is more than one hundred times lower than the dose rate of 5.5 µGyair s−1 required for X-ray medical diagnostics. (C8H20N)2Cu2Br4 ceramic wafer scintillation screen is fabricated by a cold pressing sintering process, and the clear contrast images of opaque metal box and electronic component with a spatial resolution of 9.54 lp mm−1 are realized. This study not only designs a new lead-free metal halide scintillator, but also develops a universal strategy for the preparation of large-sized scintillator screen in nondestructive X-ray imaging.  相似文献   

7.
工业X射线照相技术的应用与展望   总被引:3,自引:0,他引:3  
工业X射线检测是X射线照相技术在工业上的重要应用,其图像的数字化是未来工业探伤的发展方向。文中详细介绍了工业X射线检测数字化的优点、方法以及数字化工业探伤的发展与展望。工业X射线检测的应用将射线检测技术水平提高到一个新的层次,解决了成像无胶片化、计算机存储及传输的数字化、X射线低剂量化、结果判读及评价的远程网络化等一系列传统X射线照相检测不可逾越的难题,并可通过各种图像后处理方法提高图像分辨率和滤除噪声。该技术将逐渐取代传统胶片成为未来工业X射线检测的发展趋势。  相似文献   

8.
The development of high resolution, high aspect ratio metal dichalcogenide nanostructures is one of the most important issues in 2D material researchers due to the potential to exploit their properties into high performance devices. In this study, for the first time a way of fabricating metal dichalcogenide nanostructures with high resolution (<50 nm scale) and high aspect ratios (>120) by chemical vapor deposition assisted secondary sputtering phenomenon is reported. This approach can universally synthesize various types of metal dichalcogenides including MoS2, WS2, and SnS2, implying the possibility for further utilization with selenides and tellurides. Also, this method can produce highly periodic complex patterns such as hole–cylinder, concentric rings, and line patterns, which are unprecedented in previous reports. The feature size and aspect ratio of the metal dichalcogenide structures can be manipulated by controlling the dimensions of the photoresist prepatterns, while the pattern resolution and layer orientation can be manipulated by controlling the thickness of the deposited metal film. It is demonstrated that nanostructures with high resolution and high aspect ratio significantly improve gas‐sensing properties compared with previous metal dichalcogenide films. It is believed that the method can be a foundation for synthesizing various materials with complex patterns for future applications.  相似文献   

9.
The development of an ultra-high-resolution high-dynamic-range infrared optical coherence tomography (OCT) imaging system is reported for the novel purpose of sub-surface inspection of silicon integrated-circuits. This approach utilises an almost octave-spanning supercontinuum source and a balanced-detection scheme in a time-domain OCT configuration to achieve an axial resolution of 2.5 μm in air, corresponding to ∼700 nm in silicon. Examples of substrate thickness profiling and device feature inspection capabilities for additional circuit navigation and characterisation are presented.  相似文献   

10.
Fast neutron and X-ray imaging are considered complementary nondestructive detection technologies. However, due to their opposite cross-sections, development of a scintillator that is sensitive to both fast neutrons and X-rays within a single-material framework remains challenging. Herein, an organic–inorganic hybrid perovskite (C4H9NH3)2PbBr4 (BPB) is demonstrated as a scintillator that fully meets the requirements for both fast neutron and X-ray detection. The hydrogen-rich organic component acts as a fast neutron converter and produces detectable recoil protons. The heavy atom-rich inorganic fraction efficiently deposits the energy of charged recoil protons and directly provides a large X-ray cross-section. Due to the synergy of these organic and inorganic components, the BPB scintillator exhibits high light yields (86% of the brightness of a commercial ZnS (Ag)/6LiF scintillator for fast neutrons; 22 000 photons per MeV for X-rays) and fast response times (τdecay = 10.3 ns). More importantly, energy-selective fast neutron and X-ray imaging are also demonstrated, with high resolutions of ≈1 lp mm−1 for fast neutrons and 17.3 lp mm−1 for X-rays; these are among the highest resolution levels for 2D perovskite scintillators. This study highlights the potential of 2D perovskite materials for use in combined fast neutron and X-ray imaging applications.  相似文献   

11.
李晴宇  谈志杰  喻虹  韩申生 《红外与激光工程》2021,50(12):20210734-1-20210734-9
傅里叶变换关联成像(FGI)是利用光场的高阶关联特性提取样品傅里叶信息的成像方法,对光源空间相干性要求较低,从而为小型化高分辨X射线显微提供了新的技术途径。然而在实际应用中往往要求有限光通量以减小样品辐射损伤,同时X射线与样品发生相互作用时康普顿散射的存在也会降低信噪比。针对以上问题,模拟研究了光通量有限条件下的X射线FGI,结果表明在探测面光通量0.1 phs/pixel条件下仍然能够获得样品的振幅和相位信息,并且利用Geant4蒙特卡洛程序模拟分析了金单质、硅单质和血红蛋白三种样品所产生的康普顿散射噪声对FGI成像结果的影响,结果显示相比于传统的X射线衍射成像,计入康普顿散射噪声后的FGI仍具有良好的抗噪性。  相似文献   

12.
The patterning of contact holes by selecting out-of-focus image plane (defocus) using attenuated phase shift masks (APSM) has been studied. Defocus is found to enhance the image modulation at low partial coherence for contact holes with negative local average of mask function. Semi-dense holes up to 130 nm in 8% APSM have been printed by 0.5 μm defocus at a partial coherence of 0.31 using KrF scanner with highest numerical aperture of 0.68. However, these holes were closed with in-focus imaging. Defocus is also found to be beneficial for patterning the pitches that have extensive side lobes with in-focus imaging.  相似文献   

13.
X-ray detection is an important technology for medical diagnosis as well as industrial and security inspections. While today's commercial X-ray detectors are bulky, photodetectors based on organic semiconductors have attracted increasing attention owing to their low temperature processing capabilities, flexibility and low cost. Nonetheless, the low X-ray attenuation coefficient of organic semiconductors still hinders their practical application. Herein, a new organic-inorganic hybrid strategy is proposed to improve the X-ray sensitivity of organic photodetectors (OPDs). A solution-processed X-ray sensitive hybrid OPD is fabricated by embedding CsPbBr3 quantum dots (QDs) into a P3HT:PC61BM bulk heterojunction photodiode. The QDs, acting as embedded scintillators in the organic active layer, maintain a high radioluminescence. The proposed hybrid structure enables indirect X-ray detection in a comprehensive manner. These hybrid photodetectors exhibit suppressed dark current densities in the range of tens of picoamperes per square centimeters for different weight ratios of blended QDs. The best OPD achieves a sensitivity of 229.6 e nGy−1 mm−2 (3.67 μC Gy−1 cm−2) and a dark current of 23.3 pA cm−2 at a low operating voltage (−3 V) for 20–80 kV “soft” X-rays, thus representing great potential for the development of next generation low cost, portable, and highly sensitive X-ray detectors.  相似文献   

14.
Lead-free metal halides have recently received sustained attention because of their nontoxicity, low-cost, as well as excellent stability and optoelectronic properties. However, most of the reported lead-free metal halides are synthesized via slow solution-processing at high temperature in toxic solvents, which may impede their commercial applications. Here, a solvent-free strategy is proposed to synthesize inorganic rubidium copper halides (Rb2CuX3, X = Cl, Br) at room temperature, which exhibit efficient violet emission dominated by a self-trapped excitons (STEs) mechanism and attractive stabilities against ultraviolet illumination and heating. Thus, Rb2CuX3 powders are employed as emitters and scintillators applied in wireless light communication and X-ray imaging technologies. Under orthogonal frequency division multiplexing modulation, emitters demonstrate a broad −3 dB bandwidth of 26.3 MHz and a high received data rate of 205.1 Mbps. Additionally, flexible scintillation films based on as-prepared powders are fabricated and show outstanding X-ray scintillation properties, including a high spatial resolution of 18.1 lp mm−1 and a low detection limit of 104 nGyair s−1, as well as promising imaging performance for irregular objects. These results suggest large-scale production of nontoxic Rb2CuX3 and their potential commercialization in fields of high-speed light communication and X-ray radiography.  相似文献   

15.
基于猫眼效应的激光主动侦察技术有效地结合了激光技术、成像传感技术和微弱目标的信息处理技术,可实现对远距离微弱目标的主动探测和识别,是光电对抗领域的一项重要技术,其中作用距离是侦察系统的主要参量之一。为了评估激光主动侦察系统的作用距离,以猫眼目标的光学窗口所反射的激光回波功率为基础,分析了影响作用距离的因素,建立了最大作用距离的数学物理模型,数值模拟了发射激光峰值功率、发射激光束散角、大气能见度、探测器灵敏度以及等效反射面离焦量对最大作用距离的影响。结果表明,通过减小发射激光束散角,提高探测器灵敏度可以有效提高系统的作用距离;为满足不同情况的天气需求,可选择不同波长的激光光源。这一结果可用于指导激光主动侦察的系统设计或者作为衡量系统性能的标准。  相似文献   

16.
We describe the fabrication and characterization of large-area active-matrix X-ray/photodetector array of high quality using organic photodiodes and organic transistors. All layers with the exception of the electrodes are solution processed. Because it is processed on a very thin plastic substrate of 25 μm thickness, the photodetector is only 100 μm thick. When combined with an 300-μm-thick X-ray scintillator, this gives a thin, low-weight and shatterproof X-ray detector of ca. 400 μm thickness. We demonstrate X-ray imaging under conditions that are used in medical applications.  相似文献   

17.
This paper presents a new power efficient asynchronous multiplexer (MUX) for application in analog front-end electronics (AFE) used in X-ray medical imaging systems. Contrary to typical synchronous MUXes that have to be controlled by a clock, this circuit features a simple structure, as the clock is not required. The circuit dissipates power only while detecting the active signals and then automatically turns back to the power down mode. Medical imaging systems usually consist of several dozen to even several hundreds of channels that operate asynchronously. The proposed MUX enables an unambiguous choice of the active channel. In case of two or more channels that become active at the same time the MUX serializes the reading out data from particular channels. This characteristic leads to 100% effectiveness in data processing and no impulses’ loss. The proposed MUX together with an experimental readout ASIC has been implemented in the CMOS 0.18 μm process and occupies 1100 μm2/channel area. It works properly in a wide range of the voltage supply in between 0.8 and 1.8 V. Energy consumed during the detection of one active channel is below 1 pJ, while the detection time is about 1 ns.  相似文献   

18.
A CMOS piecewise curvature-compensated voltage reference   总被引:2,自引:0,他引:2  
This paper presents a novel approach to the design of a high-precision CMOS voltage reference. The proposed circuit utilizes MOS transistors instead of bipolar transistors to generate positive and negative temperature coefficient (TC) currents summed up to a resistive load to generate low TC reference voltage. A piecewise curvature-compensation technique is also used to reduce the TC of the reference voltage within a wider temperature range. The output reference voltage can be adjusted in a wide range according to different system requirements by setting different parameters such as resistors and transistor aspect ratios. The proposed circuit is designed for TSMC 0.6 μm standard CMOS process. Spectre-based simulations demonstrate that the TC of the reference voltage is 4.3 ppm/°C with compensation compared with 107 ppm/°C without compensation in the temperature ranges from −15 to 95 °C using a 1.5 V supply voltage.  相似文献   

19.
Thin NiO films, included in a metal/resistive oxide/metal (MRM) stack, are receiving great interest, as they exhibit resistive switching when subjected to an external applied field, and can thus be implemented in a resistive random access memory (ReRAM). The electrical switching characteristic is seen to depend on the NiO/metal coupling. Therefore a characterization of the interface between NiO and the electrode is vital to optimize and get insights on the switching phenomena. In this work we deposited NiO thin films by atomic layer deposition (ALD) at 300 °C and electron beam deposition (e-beam) at 40 °C on Si, Ni, Pt, W and TiN substrates and we characterized them with X-ray reflectivity (XRR), grazing incidence X-ray diffraction (GIXRD) and time of flight secondary ion mass spectrometry (ToF-SIMS). Depending on the growth process, we found an influence of the substrate on the NiO film roughness, which exhibits values in the 1.2-6.2 nm range. NiO electron density was 1.35-1.96 eÅ−3 spread around the nominal value of 1.83 e Å−3 for bulk cubic polycrystalline NiO. X-ray diffraction showed that NiO is polycrystalline in the cubic phase. ToF-SIMS profiles confirm NiO/Metal interface sharpness and the optimal uniformity of NiO layers. Intermixing phenomena are limited or absent and the presence of contaminants, such as C, F, and Cl is very low.  相似文献   

20.
Laser micromachining of piezoelectric materials has many advantages over other etching techniques for the fabrication of ultrasound transducer linear arrays for medical imaging. It can achieve high aspect ratios and high etch rates without the use of complicated photolithography techniques. We have investigated a laser projection etch technique to make linear arrays in single crystal (0 0 1) SrTiO3 substrates as a model of epitaxial piezoelectric thick film heterostructure. Feature sizes of 17.5 μm were obtained with depth to width aspect ratios of 4:1. The effect of laser fluence on etching was studied and it was found that straighter sidewalls and flatter trench floors were achieved as laser fluence increases. On the other hand, higher laser fluence caused increase in heat affected zone by post-pulse plasma and made the top surfaces rougher because of the accumulation of evaporated materials. Clean top surfaces of the features were achieved by deposition and subsequent lift off of a YBa2Cu3O7 sacrificial layer. In addition, the phases of recast layers on the sidewalls were characterized by four-circle X-ray diffraction with 2-D area detector before and after removed with a wet chemical etch solution. It was found that the use of the wet etchant could remove the thin polycrystalline recast layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号