首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radhika  M.  Sivakumar  P. 《Wireless Networks》2021,27(1):27-40

This article presents the design, analyses and implementation of the novel routing protocol for energy optimization based on LEACH for WSN. Network Lifetime is the major problem in various routing protocols used in WSN. In order to overcome that problem, our proposed routing protocol is developed, which is a combination of Micro Genetic algorithm with LEACH protocol. Our proposed µGA-LEACH protocol, strengthen the cluster head (CH) selection and also reduce the energy consumption of the network when compared to existing protocols. This paper shows the improvement of network lifetime and energy consumption with the optimal CH selection based on a micro genetic algorithm and also compared the results with an existing hierarchical routing protocol like LEACH, LEACH-C, LEACH GA and GADA LEACH routing protocol with various packet sizes, and initial energy.

  相似文献   

2.
Wireless sensor network (WSN) consists of densely distributed nodes that are deployed to observe and react to events within the sensor field. In WSNs, energy management and network lifetime optimization are major issues in the designing of cluster-based routing protocols. Clustering is an efficient data gathering technique that effectively reduces the energy consumption by organizing nodes into groups. However, in clustering protocols, cluster heads (CHs) bear additional load for coordinating various activities within the cluster. Improper selection of CHs causes increased energy consumption and also degrades the performance of WSN. Therefore, proper CH selection and their load balancing using efficient routing protocol is a critical aspect for long run operation of WSN. Clustering a network with proper load balancing is an NP-hard problem. To solve such problems having vast search area, optimization algorithm is the preeminent possible solution. Spider monkey optimization (SMO) is a relatively new nature inspired evolutionary algorithm based on the foraging behaviour of spider monkeys. It has proved its worth for benchmark functions optimization and antenna design problems. In this paper, SMO based threshold-sensitive energy-efficient clustering protocol is proposed to prolong network lifetime with an intend to extend the stability period of the network. Dual-hop communication between CHs and BS is utilized to achieve load balancing of distant CHs and energy minimization. The results demonstrate that the proposed protocol significantly outperforms existing protocols in terms of energy consumption, system lifetime and stability period.  相似文献   

3.

The network lifetime of Wireless Sensor Network (WSN) is one of the most challenging issues for any network protocol. The nodes in the network are densely deployed and are provided with limited power supply. The routing strategy is treated as an effective solution to improve the lifetime of the network. The cluster based routing techniques are used in the WSN to enhance the network lifespan and to minimize the energy consumption of the network. In this paper, an energy efficient heterogeneous clustering protocol for the enhancement of the network lifetime is proposed. The proposed protocol uses the sensor energy for the clustering process in a well-organized manner to maximize the lifetime of network. The MATLAB simulator is used for implementing the clustering model of proposed protocol and for measuring the effectiveness of the proposed technique the comparison is performed with the various existing approaches such as Stability Election Protocol, Distributed Energy Efficient Clustering and Adaptive Threshold Energy Efficient cross layer based Routing.

  相似文献   

4.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

5.
Analysis of energy-tax for multipath routing in wireless sensor networks   总被引:1,自引:0,他引:1  
Recently, multipath routing in wireless sensor networks (WSN) has got immense research interest due to its capability of providing increased robustness, reliability, throughput, and security. However, a theoretical analysis on the energy consumption behavior of multipath routing has not yet been studied. In this paper, we present a general framework for analyzing the energy consumption overhead (i.e., energy tax) resulting from multipath routing protocol in WSN. The framework includes a baseline routing model, a network model, and two energy consumption schemes for sensor nodes, namely, periodic listening and selective wake-up schemes. It exploits the influence of node density, link failure rates, number of multiple paths, and transmission environment on the energy consumption. Scaling laws of energy-tax due to routing and data traffic are derived through analysis, which provide energy profiles of single-path and multipath routing and serve as a guideline for designing energy-efficient protocols for WSN. The crossover points of relative energy taxes, paid by single-path and multipath routing, reception, and transmission, are obtained. Finally, the scaling laws are validated and performance comparisons are depicted for a reference network via numerical results.  相似文献   

6.
Non‐uniform energy consumption during operation of a cluster‐based routing protocol for large‐scale wireless sensor networks (WSN) is major area of concern. Unbalanced energy consumption in the wireless network results in early node death and reduces the network lifetime. This is because nodes near the sink are overloaded in terms of data traffic compared with the far away nodes resulting in node deaths. In this work, a novel residual energy–based distributed clustering and routing (REDCR) protocol has been proposed, which allows multi‐hop communication based on cuckoo‐search (CS) algorithm and low‐energy adaptive‐clustering–hierarchy (LEACH) protocol. LEACH protocol allows choice of possible cluster heads by rotation at every round of data transmission by a newly developed objective function based on residual energy of the nodes. The information about the location and energy of the nodes is forwarded to the sink node where CS algorithm is implemented to choose optimal number of cluster heads and their positions in the network. This approach helps in uniform distribution of the cluster heads throughout the network and enhances the network stability. Several case studies have been performed by varying the position of the base stations and by changing the number of nodes in the area of application. The proposed REDCR protocol shows significant improvement by an average of 15% for network throughput, 25% for network scalability, 30% for network stability, 33% for residual energy conservation, and 60% for network lifetime proving this approach to be more acceptable one in near future.  相似文献   

7.
Reducing energy consumption and increasing network lifetime are the major concerns in Wireless Sensor Network (WSN). Increase in network lifetime reduces the frequency of recharging and replacing batteries of the sensor node. The key factors influencing energy consumption are distance and number of bits transmitted inside the network. The problem of energy hole and hotspot inside the network make neighbouring nodes unusable even if the node is efficient for data transmission. Energy Efficient Energy Hole Repelling (EEEHR) routing algorithm is developed to solve the problem. Smaller clusters are formed near the sink and clusters of larger size are made with nodes far from the sink. This methodology promotes equal sharing of load repelling energy hole and hotspot issues. The opportunity of being a Cluster Head (CH) is given to a node with high residual energy, very low intra cluster distance in case of nodes far away from the sink and very low CH to sink distance for the nodes one hop from the sink. The proposed algorithm is compared with LEACH, LEACH-C and SEP routing protocol to prove its novel working. The proposed EEEHR routing algorithm provides improved lifetime, throughput and less packet drop. The proposed algorithm also reduces energy hole and hotspot problem in the network.  相似文献   

8.
朱国巍  熊妮 《电视技术》2015,39(15):74-78
针对传感器节点的电池容量限制导致无线传感网络寿命低的问题,基于容量最大化(CMAX)、线上最大化寿命(OML)两种启发式方法以及高效路由能量管理技术(ERPMT),提出了基于ERPMT改进启发式方法的无线传感网络寿命最大化算法。首先,通过启发式方法初始化每个传感器节点,将节点能量划分为传感器节点起源数据和其它节点数据延迟;然后利用加入的一种优先度量延迟一跳节点的能量消耗;最后,根据路径平均能量为每个路由分配一个优先级,并通过ERPMT实现最终的无线传感网络优化。针对不同分布类型网络寿命的实验验证了本文算法的有效性及可靠性,实验结果表明,相比较为先进的启发式方法CMAX及OML,本文算法明显增大了无线传感网络的覆盖范围,并且大大地延长了网络的寿命。  相似文献   

9.

Wireless sensor networks (WSNs) have grown excessively due to their various applications and low installation cost. In WSN, the main concern is to reduce energy consumption among nodes while maintaining timely and reliable data forwarding. However, most of the existing energy aware routing protocols incur unbalanced energy consumption, which results in inefficient load balancing and compromised network lifetime. Therefore, the main target of this research paper is to present adaptive energy aware cluster-based routing (AECR) protocol for improving energy conservation and data delivery performance. Our proposed AECR protocol differs from other energy efficient routing schemes in some aspects. Firstly, it generates balance sized clusters based on nodes distribution and avoids random clusters formation. Secondly, it optimizes both intra-cluster and inter-cluster routing paths for improving data delivery performance while balancing data traffic on constructed forwarding routes and at the end, in order to reduce the excessive energy consumption and improving load distribution, the role of Cluster Head (CH) is shifted dynamically among nodes by exploit of network conditions. Simulation results demonstrate that AECR protocol outperforms state of the art in terms of various performance metrics.

  相似文献   

10.
In recent research, link stability is getting tremendous attention in mobile adhoc networks (MANETs), because of several impediments that occur in a reliable and robust network. Link stability metric is used to improve network performance in terms of end-to-end delay, data success delivery ratio (DSDR) and available route time (ART). Energy consumption, bandwidth and communication delay of major concern in ad hoc networks. A high mobility of MANET nodes reduces the reliability of network communication. In a dynamic networks, high mobility of the nodes makes it very difficult to predict the dynamic routing topology and hence cause route/link failures. Multicast in MANETs is an emerging trend that effectively improves the performance while lowering the energy consumption and bandwidth usage. Multicast routing protocol transmits a packet to multicast a group at a given time instant to achieve a better utilization of resources. In this paper, node mobility is considered to map better their movement in the network. So, the links with long active duration time can be identified as a stable link for route construction. Variation in signal strength is used to identify whether the direction of the node is towards or away from estimating node. We consider signal strength as QoS metric to calculate link stability for route construction. Efforts are made to identify the link with highly probable longer lifetime as the best suitable link between two consecutive nodes. We predict the movement time of nodes that define the route path to the node destination. Exata/cyber simulator is used for network simulation. The simulation results of the proposed routing protocol are compared with on-demand multicast routing protocol and E-ODMRP, which works on minimum hop count path. Analysis of our simulation results has shown improvement of various routing performance metrics such as DSDR, ART, routing overhead and packet drop ratio.  相似文献   

11.
王茜  李振波  陈佳品 《半导体光电》2016,37(1):243-247,283
针对本振光为高斯分布, 接收信号光经望远镜聚焦后为艾里分布的情况, 首先对高斯和艾里函数用数值计算的方式得到两种光斑最大外差效率: 当艾里斑直径和高斯光束束腰直径之比为1.719时, 最大外差效率为81.45%; 然后介绍了光的标量衍射和Zernike像差理论, 分析了夫琅禾费衍射适用于相干聚焦光场的条件, 计算了平面、高斯、艾里光场和Zernike像差的采样要求, 对存在各种像差的光学系统的外差效率进行了仿真, 分析了倾斜、离焦、像散、慧差、球差等基本像差及组合像差对外差效率的影响, 结果表明: 各种像差对外差效率的影响从低到高分别为像散、倾斜、离焦、慧差和球差; 3dB外差效率损失对应相干系统的指标为跟踪误差优于1μrad(RMS), 组合波像差优于0.1λ。研究结果对相干激光通信系统的链路损耗分配和光机系统的工程设计具有指导意义。  相似文献   

12.
通常的无线传感器分簇网络存在节点负载不均衡的问题。为均衡各节点能量消耗,延长网络生存周期,将K均值算法与遗传算法相结合,提出一种负载均衡的无线传感器网络路由算法,算法利用遗传算法的全局寻优能力以克服传统K均值算法的局部性和对初始中心的敏感性,实现了传感器网络节点自适应成簇与各节点负载均衡。仿真实验表明,该算法显著延长了网络寿命,相对于其他分簇路由算法,其网络生存时间延长了约43%。  相似文献   

13.
Wireless sensor network contains several small sensor nodes that are designed to work autonomously. Coverage preservation is an underlying requirement to efficiently deliver certain services in WSNs. During network operation, some sensor nodes die because of several reasons like energy exhaustion, link failure, node failure etc. We refer it as coverage hole problem of WSNs. In this paper, a new decentralized, node based, localized algorithm called Coverage Hole Detection and Restoration is proposed for detection as well as restoration of coverage holes. Our proposed algorithm is expected to outperform existing algorithms on the parameters of energy and time consumption for convex and non-convex holes.  相似文献   

14.
Current routing protocols in wireless sensor and actor networks (WSANs) shows a lack of unification for different traffic patterns because the communication for sensor to actor and that for actor to actor are designed separately. Such a design poses a challenge for interoperability between sensors and actors. With the presence of rich-resource actor nodes, we argue that to improve network lifetime, the problem transforms from reducing overall network energy consumption to reducing energy consumption of constrained sensor nodes. To reduce energy consumption of sensor nodes, especially in challenging environments with coverage holes/obstacles, we propose that actor nodes should share forwarding tasks with sensor nodes. To enable such a feature, efficient interoperability between sensors and actors is required, and thus a unified routing protocol for both sensors and actors is needed. This paper explores capabilities of directional transmission with smart antennas and rich-resource actors to design a novel unified actor-oriented directional anycast routing protocol (ADA) which supports arbitrary traffic in WSANs. The proposed routing protocol exploits actors as main routing anchors as much as possible because they have better energy and computing power compared to constraint sensor nodes. In addition, a directional anycast routing approach is also proposed to further reduce total delay and energy consumption of overall network. Through extensive experiments, we show that ADA outperforms state-of-the-art protocols in terms of packet delivery latency, network lifetime, and packet reliability. In addition, by offer fault tolerant features, ADA also performs well in challenging environments where coverage holes and obstacles are of concerns.  相似文献   

15.
The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network (WSN). Although the hierarchical routing protocol can effectively cope with large-scale application scenarios, how to elect a secure cluster head and balance the network load becomes an enormous challenge. In this paper, a Trust Management-based and ​Low Energy Adaptive Clustering Hierarchy protocol (LEACH-TM) is proposed. In LEACH-TM, by using the number of dynamic decision cluster head nodes, residual energy and density of neighbor nodes, the size of the cluster can be better constrained to improve energy efficiency, and avoid excessive energy consumption of a node. Simultaneously, the trust management scheme is introduced into LEACH-TM to defend against internal attacks. The simulation results show that, compared with LEACH-SWDN protocol and LEACH protocol, LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption, and can effectively mitigate the influence of malicious nodes on cluster head selection, which can greatly guarantee the security of the overall network.  相似文献   

16.
Zhang  Yijie  Liu  Mandan 《Wireless Networks》2020,26(5):3539-3552

Wireless sensor network (WSN) is a wireless network composed of a large number of static or mobile sensors in a self-organizing and multi-hop manner. In WSN research, node placement is one of the basic problems. In view of the coverage, energy consumption and the distance of node movement, an improved multi-objective optimization algorithm based on NSGA2 is proposed in this paper. The proposed algorithm is used to optimize the node placement of WSN. The proposed algorithm can optimize both the node coverage and lifetime of WSN while also considering the moving distance of nodes, so as to optimize the node placement of WSN. The experiments show that the improved NSGA2 has improvements in both searching performance and convergence speed when solving the node placement problem.

  相似文献   

17.
无线传感器网络是一种无线自组织网络,它由大量能量有限的传感器节点组成.能量消耗和网络覆盖是无线传感器网络的两个核心问题,网络覆盖决定了无线传感器网络对物理世界的监测能力,能量消耗则决定了无线传感器网络的生存时间.本文研究了一种改进的基于无交集节点分组算法,针对随机选取节点实现无交集节点分组方式获得的分组个数少且节点通信...  相似文献   

18.
无线传感器网络LEACH改进算法的设计与仿真   总被引:5,自引:0,他引:5  
在众多的无线传感器网络分簇路由协议中,低功耗自适应分簇(Low Energy Adaptive Clustering Hierarchy,LEACH)算法是其中比较流行的协议之一,但它并没有考虑到每个节点的能量状态,而且最优簇首数一旦确定,整个网络通信期间不再改变,因而不能更有效地提高网络的生存时间.文章在LEACH协议的基础上提出了一种改进的高能效无线传感器网络协议-EECRP(an Energy Efficient Cluster Routing Protocol).仿真结果表明,与LEACH相比,EECRP具有更好的能量有效性,并且提高了无线传感器网络的寿命.  相似文献   

19.
This paper proposes a novel energy efficient unequal clustering algorithm for large scale wireless sensor network(WSN) which aims to balance the node power consumption and prolong the network lifetime as long as possible.Our approach focuses on energy efficient unequal clustering scheme and inter-cluster routing protocol.On the one hand,considering each node’s local information such as energy level,distance to base station and local density,we use fuzzy logic system to determine one node’s chance of becoming cluster head and estimate the corresponding competence radius.On the other hand,adaptive max-min ant colony optimization is used to construct energy-aware inter-cluster routing between cluster heads and base station(BS),which balances the energy consumption of cluster heads and alleviates the hot spots problem that occurs in multi-hop WSN routing protocol to a large extent.The confirmation experiment results have indicated the proposed clustering algorithm has more superior performance than other methods such as low energy adaptive clustering hierarchy(LEACH) and energy efficient unequal clustering(EEUC).  相似文献   

20.
刘江涛 《光电子.激光》2010,(11):1653-1656
分析了基于低功耗自适应分簇(LEACH)路由协议的无线传感网络(WSN)在不同拓扑形状下的生命周期,并改进了长方形拓扑形状的路由协议。进而针对WSN在某些场合能量有限、易受干扰和安全性差等缺点,在长方形区域中引入分布式光纤传感结构。将传感光纤铺设在环境复杂和外界电磁波干扰大的监测区域,从而提高整个传感网络的生命周期和可靠性。理论分析和仿真结果表明,改进的拓扑和协议在提高可靠性的同时,有效地延长了光WSN的生存时间,性能优于传统LEACH协议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号