首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report on the fabrication of spin-coated biodegradable polylactic acid (PLA) thin films to be used as substrates for the realisation of all-solution-processed organic electronic devices. The full mechanical and electrical characterisation of these substrates shows that they exhibit good mechanical and dielectric properties and are therefore suitable for the fabrication of disposable electronics. To demonstrate practically the functionality of such PLA thin films, organic electronic devices were realised on the top of them, exclusively by means of solution-process fabrication techniques and in particular inkjet-printing. Also, a photonic curing procedure is here presented as a means for sintering the conductive inks without heating up the PLA substrates. Two types of organic transistors were fabricated on the top of PLA: organic field-effect transistors (OFETs), where the PLA film was used not only as a substrate but also as the gate dielectric, and all-inkjet-printed organic electrochemical transistors (OECTs). The second typology of transistors exhibited one of the highest transconductance reported so far in the literature (up to 2.75 mS). This study opens an avenue for the fabrication of disposable, low-cost organic electronic devices.  相似文献   

2.
Solution-processed thin film transistors can be implemented using simple and low cost fabrication, and are the best candidates for commercialization due to their application to a range of wearable electronics. We report an ambipolar charge injection interlayer that can improve both hole and electron injection in organic field-effect transistors (OFETs) with inexpensive source-drain electrodes. The solution processed ambipolar injection layer is fabricated by selective dispersion of semiconducting single walled carbon nanotubes using poly(9,9-dioctylfluorene). OFETs with molybdenum (Mo) contacts and interlayer (Mo/interlayer OFETs) exhibit superior performance, including higher hole and electron mobilities, device yield, lower threshold voltages, and lower trap densities than those of bare transistors. While OFETs with Mo contacts show unipolar p-type behaviour, Mo/interlayer OFETs display ambipolar transport due to significant enhancement of electron injection. In the p-type region, transistor performance is comparable to devices with gold (Au). Hole mobility is increased approximately ten-fold over devices with only Mo contacts. The electron mobility of Mo/interlayer OFETs is 0.05 cm2V−1s−1, which is higher than devices with Au electrodes. The p-type contact resistances of Mo/interlayer OFETs are half those of OFETs with Mo contacts. Trap density in Mo/interlayer OFETs is one order magnitude lower than that of pristine devices. We also demonstrate that this approach is extendible to other metals (nickel) and n-type semiconductors with different energy levels. Injection by tunnelling is suggested as the mechanism of ambipolar injection.  相似文献   

3.
Organic electronics is an emerging technology that enables the fabrication of devices with low-cost and simple solution-based processes at room temperature. In particular, it is an ideal candidate for the Internet of Things since devices can be easily integrated in everyday objects, potentially creating a distributed network of wireless communicating electronics. Recent efforts allowed to boost operational frequency of organic field-effect transistors (OFETs), required to achieve efficient wireless communication. However, in the majority of cases, in order to increase the dynamic performances of OFETs, masks based lithographic techniques are used to reduce device critical dimensions, such as channel and overlap lengths. This study reports the successful integration of direct written metal contacts defining a 1.4 µm short channel, printed with ultra-precise deposition technique (UPD), in fully solution fabricated n-type OFETs. An average transition frequency as high as 25.5 MHz is achieved at 25 V. This result demonstrates the potential of additive, high-resolution direct-writing techniques for the fabrication of organic electronics operating in the high-frequency regime.  相似文献   

4.
The transfer of benchtop knowledge into large scale industrial production processes represents a challenge in the field of organic electronics. Large scale industrial production of organic electronics is envisioned as roll to roll (R2R) processing which nowadays comprises usually solution-based large area printing steps. The search for a fast and reliable fabrication process able to accommodate the deposition of both insulator and semiconductor layers in a single step is still under way. Here we report on the fabrication of organic field effect transistors comprising only evaporable small molecules. Moreover, both the gate dielectric (melamine) and the semiconductor (C60) are deposited in successive steps without breaking the vacuum in the evaporation chamber. The material characteristics of evaporated melamine thin films as well as their dielectric properties are investigated, suggesting the applicability of vacuum processed melamine for gate dielectric layer in OFETs. The transistor fabrication and its transfer and output characteristics are presented along with observations that lead to the fabrication of stable and virtually hysteresis-free transistors. The extremely low price of precursor materials and the ease of fabrication recommend the evaporation processes as alternative methods for a large scale, R2R production of organic field effect transistors.  相似文献   

5.
Inspired by nature, various self-healing materials that can recover their physical properties after external damage have been developed. Recently, self-healing materials have been widely used in electronic devices for improving durability and protecting the devices from failure during operation. Moreover, self-healing materials can integrate many other intriguing properties of biological systems, such as stretchability, mechanical toughness, adhesion, and structural coloration, providing additional fascinating experiences. All of these inspirations have attracted extensive research on bioinspired self-healing soft electronics. This review presents a detailed discussion on bioinspired self-healing soft electronics. Firstly, two main healing mechanisms are introduced. Then, four categories of self-healing materials in soft electronics, including insulators, semiconductors, electronic conductors, and ionic conductors, are reviewed, and their functions, working principles, and applications are summarized. Finally, human-inspired self-healing materials and animal-inspired self-healing materials as well as their applications, such as organic field-effect transistors (OFETs), pressure sensors, strain sensors, chemical sensors, triboelectric nanogenerators (TENGs), and soft actuators, are introduced. This cutting-edge and promising field is believed to stimulate more excellent cross-discipline works in material science, flexible electronics, and novel sensors, accelerating the development of applications in human motion monitoring, environmental sensing, information transmission, etc.  相似文献   

6.
Field‐effect transistors are the fundamental building blocks for electronic circuits and processors. Compared with inorganic transistors, organic field‐effect transistors (OFETs), featuring low cost, low weight, and easy fabrication, are attractive for large‐area flexible electronic devices. At present, OFETs with planar structures are widely investigated device structures in organic electronics and optoelectronics; however, they face enormous challenges in realizing large current density, fast operation speed, and outstanding mechanical flexibility for advancing their potential commercialized applications. In this context, vertical organic field‐effect transistors (VOFETs), composed of vertically stacked source/drain electrodes, could provide an effective approach for solving these questions due to their inherent small channel length and unique working principles. Since the first report of VOFETs in 2004, impressive progress has been witnessed in this field with the improvement of device performance. The aim of this review is to give a systematical summary of VOFETs with a special focus on device structure optimization for improved performance and potential applications demonstrated by VOFETs. An overview of the development of VOFETs along with current challenges and perspectives is also discussed. It is hoped that this review is timely and valuable for the next step in the rapid development of VOFETs and their related research fields.  相似文献   

7.
Polyimide (PI) materials are lightweight, flexible, resistant strongly to heat and chemicals, and have been widely used in electronics industry such as working as electronic packaging materials in large-scale integrated circuits. In this letter, PI materials, for the first time, are introduced into organic field-effect transistors (OFETs) and circuits as insulator layers in order to be compatible with the photolithography process. Moreover, a novel method is developed to make the PI films strong enough to endure the critical processes of photolithography (e.g., the influence of developer on polyimide layer). Based on the intact PI insulator and the modified photolithographic technique, large scale, flexible transistor arrays and circuits were fabricated with high resolution and high performance (mobility up to 0.55 cm2 V−1 s−1 for bottom-contact bottom-gate OFETs). It provides a new way for the fabrication of large-area organic devices and circuits beyond solution printed techniques, especially for the application of organic semiconductors with poor solubility, e.g., pentacene.  相似文献   

8.
Biocompatible, biodegradable, and solid‐state electrolyte‐based organic transistors are demonstrated. As the electrolyte is composed of all edible materials, which are levan polysaccharide and choline‐based ionic liquid, the organic transistor fabricated on the electrolyte can be biocompatible and biodegrable. Compared to the other ion gel based electrolytes, it has superior electrical and mechanical properties, large specific capacitance (≈40 µF cm?2), non‐volatility, flexibility, and high transparency. Thus, it shows mechanical reliability by maintaining electrical performances under up to 1.11% of effective bending strain, 5% of stretching, and have low operation voltage range when it is utilized in organic transistors. Moreover, the biodegradable electrolyte‐based organic transistors can be applied to bio‐integrated devices, such as electrocardiogram (ECG) recordings on human skin and the heart of a rat. The measured ECG signals from the transistors, compared to signals from electrode‐based sensors, has a superior signal‐to‐noise ratio. The biocompatible and biodegradable materials and devices can contribute to the development of many bioelectronics.  相似文献   

9.
《Organic Electronics》2007,8(4):389-395
Within the past years there has been much effort in developing and improving new techniques for the processing of advanced functional materials used in promising applications like micro-optics or organic electronics. Much attention has been paid to solution-based techniques, which enable low-cost processing and new possible developments like flexible displays or inkjet printed electronics. An alternative approach to inkjet printing is soft-lithography, which is a collective term for a number of non-photolithographic techniques and has become an important tool for the micron-sized structuring of materials.Here we report on the use of micromolding in capillaries (MIMIC) and microtransfer printing (μTP) as two soft-lithographic techniques for the fabrication of silver source/drain electrodes in well-performing bottom-gate/bottom-contact organic field-effect transistors (OFETs) with poly(3-hexylthiophene) as active layer material.While MIMIC combines solution-processability with high lateral resolution for highly accurate patterns, μTP is the miniaturized counterpart to conventional letterpress printing.The performance of the OFETs fabricated with these techniques is similar to devices based on conventional gold source/drain electrodes with well-defined source-to-drain current saturation and a linear behavior at low drain voltages suggesting a low contact resistance and hence good carrier injection from the silver electrodes into the organic semiconductor.  相似文献   

10.
The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light‐emitting diodes (OLEDs), photovoltaics (OPVs), and field‐effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant‐modified cathodes, hole‐transporting buffer layers, and self‐assembled monolayer (SAM)‐modified anodes are highlighted. In addition to enabling the production of high‐efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source–drain electrode–semiconductor interfaces, dielectric–semiconductor interfaces, and ultrathin dielectrics is shown to allow for high‐performance OFETs.  相似文献   

11.
Delocalized singlet biradical hydrocarbons hold promise as new semiconducting materials for high‐performance organic devices. However, to date biradical organic molecules have attracted little attention as a material for organic electronic devices. Here, this work shows that films of a crystallized diphenyl derivative of s‐indacenodiphenalene (Ph2‐IDPL) exhibit high ambipolar mobilities in organic field‐effect transistors (OFETs). Furthermore, OFETs fabricated using Ph2‐IDPL single crystals show high hole mobility (μh = 7.2 × 10?1 cm2 V?1 s?1) comparable to that of amorphous Si. Additionally, high on/off ratios are achieved for Ph2‐IDPL by inserting self‐assembled mono­layer of alkanethiol between the semiconducting layer and the Au electrodes. These findings open a door to the application of ambipolar OFETs to organic electronics such as complementary metal oxide semiconductor logic circuits.  相似文献   

12.
Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.  相似文献   

13.
A new method for direct patterning of organic optoelectronic/electronic devices using a reconfigurable and scalable printing method is reported by Vladimir Bulovic and co‐workers on p. 2722. The printing technique is applied to the fabrication of high‐resolution printed organic light emitting devices (OLEDs) and organic field effect transistors (OFETs). Remarkably, the final print‐deposited films are evaporated onto the substrate (rather than solvent printed), giving high‐quality, solvent‐free, molecularly flat structures that match the performance of comparable high‐performance unpatterned films. We introduce a high resolution molecular jet (MoJet) printing technique for vacuum deposition of evaporated thin films and apply it to fabrication of 30 μm pixelated (800 ppi) molecular organic light emitting devices (OLEDs) based on aluminum tris(8‐hydroxyquinoline) (Alq3) and fabrication of narrow channel (15 μm) organic field effect transistors (OFETs) with pentacene channel and silver contacts. Patterned printing of both organic and metal films is demonstrated, with the operating properties of MoJet‐printed OLEDs and OFETs shown to be comparable to the performance of devices fabricated by conventional evaporative deposition through a metal stencil. We show that the MoJet printing technique is reconfigurable for digital fabrication of arbitrary patterns with multiple material sets and high print accuracy (of better than 5 μm), and scalable to fabrication on large area substrates. Analogous to the concept of “drop‐on‐demand” in Inkjet printing technology, MoJet printing is a “flux‐on‐demand” process and we show it capable of fabricating multi‐layer stacked film structures, as needed for engineered organic devices.  相似文献   

14.
Physically flexible electronics offer a wide range of benefits, including the development of next‐generation consumer electronics and healthcare products. The advancement of physical flexibility, typically achieved by the reduction of the total device thickness, including substrates and encapsulation layers, shows great promise for skin‐laminated electronics. Organic electronics—devices relying on carbon‐based materials—offer many advantages over their inorganic counterparts, including the following: significantly lower fabrication temperatures resulting in alternative fabrication techniques, including inkjet and roll‐to‐roll printing, enabling low‐cost and large‐area fabrication; biocompatibility; and spectacular physical flexibility. This article presents a review, spanning the last two decades, of organic field‐effect transistors with the total thickness of just a few microns as well as devices demonstrated in this decade with a total thickness of few hundred of nanometers. A handful of demonstrations of other organic electronic thin film devices are also presented.  相似文献   

15.
Green electronics made from degradable materials have recently attracted special attention, because electronic waste (e-waste) represents a serious threat to the environment and to human health worldwide. Among the novel materials used for sustainable technologies, nanocelluloses containing at least 1D in the nanoscale range (1–100 nm) have been widely exploited for various industrial applications owing to their inherent properties, such as biodegradability, mechanical strength, thermal stability, and optical transparency. This review highlights recent advances in research on the development of patterns for conductive material on nanocellulose substrates for use in high-performance green electronics. The advantages of nanocellulose substrates compared to conventional paper substrates for advanced green electronics are discussed. Importantly, this review emphasizes various fabrication strategies for producing conductive patterns on different types of nanocellulose-based substrates, such as cellulose nanofiber (CNF), (2,2,6,6-tetramethylpiperidin-1-yl)oxyl(TEMPO)-oxidized CNF, regenerated cellulose, and bacterial cellulose. In the latter part of this review, emerging engineering applications for green electronics such as circuits, transistors/antennas, sensors, energy storage systems, and electrochromic devices are further discussed.  相似文献   

16.
Inorganic semiconductor–metal–semiconductor transistors were developed more than 40 years ago. However, despite being potentially attractive for fast switching and sensor applications, they are difficult to produce and usually show low base transport factors, thereby limiting their applicability. Recent developments in hybrid organic/inorganic semiconductor–metal–semiconductor transistors, however, demonstrate that high‐gain transistors can be produced using simple technologies. Additionally, their fabrication is compatible with well‐established silicon electronics technology, which provides an enormous advantage. These devices, built in a vertical architecture, offer attractive new possibilities due to the large variety of available molecular semiconductors, opening the possibility of incorporating new functionalities in silicon‐based devices.  相似文献   

17.
Electron injection plays a crucial role in arousing the double-slope characteristics for p-type organic field-effect transistors (OFETs) with narrow-bandgap organic semiconductors (OSCs). This issue will not only result in the misrepresentation of OFET performance but also may cause device instability, hence impeding their further development in real-world applications. A facile and highly efficient approach is developed to circumvent this issue by implementing modification on the electrode/organic semiconductor interface. An ultrathin layer of wide-bandgap OSC with suitable energy levels is introduced to block the undesirable electron injection. By this means, typical double-slope behaviors and bias stress stability in the p-type OFETs can be significantly improved. Using 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene-based OFETs the double-slope behaviors of as-fabricated devices are effectively converted to near-ideal behaviors after modification, leading to a dramatic improvement of average reliability from 65.11% to 91.76%. Furthermore, the positive drift of transfer curves under prolonged bias stress is also successfully suppressed. This strategy demonstrates good universality and can provide a new guideline for the fabrication of OFETs with ideal behaviors.  相似文献   

18.
Biocompatible‐ingestible electronic circuits and capsules for medical diagnosis and monitoring are currently based on traditional silicon technology. Organic electronics has huge potential for developing biodegradable, biocompatible, bioresorbable, or even metabolizable products. An ideal pathway for such electronic devices involves fabrication with materials from nature, or materials found in common commodity products. Transistors with an operational voltage as low as 4–5 V, a source drain current of up to 0.5 μA and an on‐off ratio of 3–5 orders of magnitude have been fabricated with such materials. This work comprises steps towards environmentally safe devices in low‐cost, large volume, disposable or throwaway electronic applications, such as in food packaging, plastic bags, and disposable dishware. In addition, there is significant potential to use such electronic items in biomedical implants.  相似文献   

19.
Solution-processed polar hydroxyl containing polymers such as poly(4-vinylphenol) are widely utilized in organic filed-effect transistors (OFETs) due to their high dielectric constant (k) and excellent insulating properties owing to the crosslinking through their hydroxyl groups. However, hydroxyl functionalities can function as trapsites, and their crosslinking reactions decrease the k value of materials. Hence, in this study, new solution-processable copolymers containing both carboxyl and hydrophobic functionalities are synthesized. A fluorophenyl azide (FPA) based UV-assisted crosslinker is also employed to promote the movement of polar carboxyl groups toward the bulk region and the hydrophobic functionalities to the surface region, thereby maintaining the high-k characteristics and hydrophobic surface in thin film. Thus, the addition of an FPA crosslinker eliminates the trapsites on the surface, allowing a stable operation and efficient charge transport. Additionally, the solution-processability enables the production of uniform and thin films to yield OFETs with stable and low-voltage driving characteristics. The printed layers are also applied as gate dielectrics for floating gate memory devices and in integrated one-transistor-one-transistor based memory cells, displaying their excellent memory performance. The synthesis and fabrication strategies employed in this study can become useful guidelines for the production of high-k dielectrics for stable OFETs and other applications.  相似文献   

20.
Biocompatible‐ingestible electronic circuits and capsules for medical diagnosis and monitoring are currently based on traditional silicon technology. Organic electronics has huge potential for developing biodegradable, biocompatible, bioresorbable, or even metabolizable products. An ideal pathway for such electronic devices involves fabrication with materials from nature, or materials found in common commodity products. Transistors with an operational voltage as low as 4–5 V, a source drain current of up to 0.5 μA and an on‐off ratio of 3–5 orders of magnitude have been fabricated with such materials. This work comprises steps towards environmentally safe devices in low‐cost, large volume, disposable or throwaway electronic applications, such as in food packaging, plastic bags, and disposable dishware. In addition, there is significant potential to use such electronic items in biomedical implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号