首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In millimeter wave systems, performance degradation mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for ultra-wide band applications identified for possible 5G usage. For this purpose, a novel differential symmetrical load delay cell based 3-stage ring oscillator has been introduced to design the ring-VCO. The 28 nm CMOS Fully Depleted Silicon On Insulator (FDSOI) technology is adopted for designing this VCO circuit with 1 V power supply while a new voltage control through the transistor body bias is implemented. The simulated results show that the proposed oscillator works in the tuning range of 29–49 GHz and dissipates 3.75 mW of power. It exhibits a phase noise of −129.2 dBc/Hz at 1 MHz offset from 49 GHz oscillation frequency, and a remarkable Figure of Merit (FoM) of −217.26 dBc/Hz. With similar power supply, the phase noise rises to −93.16 dBc/Hz for a second oscillator involving more of active components exactly 9 delay cells. Further, the impact of the operation temperature variation on the VCO performance is investigated. Results show a drift in the oscillation frequency for a temperature step from 27 °C to 40 °C and a degradation of 3dBc in the phase noise performance.  相似文献   

2.
In this paper, a novel circuit topology of voltage-controlled oscillators (VCOs) suitable for ultra-low-voltage operations is presented. By utilizing the capacitive feedback and the forward-body-bias (FBB) technique, the proposed VCO can operate at reduced supply voltage and power consumption while maintaining remarkable circuit performance in terms of phase noise, tuning range, and output swing. Using a standard 0.18-mum CMOS process, a 5.6-GHz VCO is designed and fabricated for demonstration. Consuming a dc power of 3 mW from a 0.6-V supply voltage, the VCO exhibits a frequency tuning range of 8.1% and a phase noise of -118 dBc/Hz at 1-MHz offset frequency. With an FBB for the cross-coupled transistors, the fabricated circuit can operate at a supply voltage as low as 0.4 V. The measured tuning range and phase noise are 6.4% and -114 dBc/Hz, respectively  相似文献   

3.
A 5-GHz fully integrated full PMOS low-phase-noise LC VCO   总被引:1,自引:0,他引:1  
A 5-GHz fully integrated, full PMOS, low-phase-noise and low-power differential voltage-controlled oscillator (VCO) is presented. This circuit is implemented in a 0.35-/spl mu/m four-metal BiCMOS SiGe process. At 2.7-V power supply voltage and a total power dissipation of only 13.5 mW, the proposed VCO features a worst case phase noise of -97 dBc/Hz and -117 dBc/Hz at 100 kHz and 1 MHz frequency offset, respectively. The oscillator is tuned from 5.13 to 5.68 GHz with a tuning voltage varying from 0 to 2.7 V.  相似文献   

4.
The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is ?110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about ?1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about ?180.7 and ?191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.  相似文献   

5.
In this paper, a wide tuning-range CMOS voltage-controlled oscillator (VCO) with high output power using an active inductor circuit is presented. In this VCO design, the coarse frequency is achieved by tuning the integrated active inductor. The circuit has been simulated using a 0.18-µm CMOS fabrication process and presents output frequency range from 100 MHz to 2.5 GHz, resulting in a tuning range of 96%. The phase noise is –85 dBc/Hz at a 1 MHz frequency offset. The output power is from –3 dBm at 2.55 GHz to +14 dBm at 167 MHz. The active inductor power dissipation is 6.5 mW and the total power consumption is 16.27 mW when operating on a 1.8 V supply voltage. By comparing this active inductor architecture VCO with general VCO topology, the result shows that this topology, which employs the proposed active inductor, produces a better performance.  相似文献   

6.
本文设计了一款应用于卫星电视天线电路中低功耗、低相噪的宽带单片集成压控振荡器。该振荡器利用PMOS尾电流源和MIM电容阵列结构。在保证调谐范围的前提下,有效的降低了相位噪声。使得该压控振荡器实现了3.384GHz~4.022GHz频段的覆盖,在中心频率为3.7GHz时,100Hz和1MHz频偏处的相位噪声分别为-90.4dBc/Hz和-119.1dBc/Hz,工作电压下为1.8V,功耗仅为2.5mW。  相似文献   

7.
This paper presents an ultra low power consumption 65 GHz LC-VCO dedicated to wireless high data rate applications. It is designed in a 65 nm CMOS SOI process, which improves passive devices behavior. The proposed VCO achieves a frequency tuning range (FTR) of 9.7 % and a phase noise of ?110.86 dBc/Hz at 10 MHz of the carrier. All integrated passive components (including transmission lines and a transformer-based balun) are modeled using advanced electromagnetic (EM) field solvers. The power consumption of the proposed VCO is as low as 1.1 mW when biased by a 0.8-V supply voltage. The FoM of this millimeter wave circuit, whose core occupies a silicon footprint of only 0.047 mm2, is ?184.07 dBc/Hz.  相似文献   

8.
《Microelectronics Journal》2014,45(6):740-750
A low power frequency synthesizer for WLAN applications is proposed in this paper. The NMOS transistor-feedback voltage controlled oscillator (VCO) is designed for the purpose of decreasing phase noise. TSPC frequency divider is designed for widening the frequency range with keeping low the power consumption. The phase frequency detector (PFD) with XOR delay cell is designed to have the low blind and dead zone, also for neutralizing the charge pump (CP) output currents; the high gain operational amplifier and miller capacitors are applied to the circuit. The frequency synthesizer is simulated in 0.18 µm CMOS technology while it works at 1.8 V supply voltage. The VCO has a phase noise of −136 dBc/Hz at 1 MHz offset. It has 10.2% tuning range. With existence of a frequency divider in the frequency synthesizer loop the output frequency of the VCO can be divided into the maximum ratio of 18. It is considered that the power consumption of the frequency synthesizer is 4 mW and the chip area is 10,400 µm2.  相似文献   

9.
A multiphase oscillator suitable for 15/30-GHz dual-band applications is presented. In the circuit implementation, the 15-GHz half-quadrature voltage-controlled oscillator (VCO) is realized by a rotary traveling-wave oscillator, while frequency doublers are adopted to generate the quadrature output signals at the 30-GHz frequency band. The proposed circuit is fabricated in a standard 0.18-mum CMOS process with a chip area of 1.1times1.0 mm2. Operated at a 2-V supply voltage, the VCO core consumes a dc power of 52 mW. With a frequency tuning range of 250 MHz, the 15-GHz half-quadrature VCO exhibits an output power of -8 dBm and a phase noise of -112 dBc/Hz at 1-MHz offset frequency. The measured power level and phase noise of the 30-GHz quadrature outputs are -16 dBm and -104 dBc/Hz, respectively  相似文献   

10.
A fully integrated floating active inductor based voltage-controlled oscillator (VCO) is presented. The active inductor employs voltage differencing transconductance amplifier (VDTA) as a building block. The designed VCO achieves frequency tuning by varying the bias current through the VDTA and utilizes a Class-C topology for improving the phase noise performance. The inductor-less VCO is designed and implemented in a 45-nm CMOS process and its performance is estimated using Virtuoso ADE of Cadence. Operating at a supply voltage of ±1 V, the proposed VCO consumes 0.44–1.1 mW corresponding to the oscillation frequency of 1.1–1.8 GHz thereby exhibiting a tuning range of 48.27%. The phase noise of the VCO lies in the range of −94.12 to −98.37 dBc/Hz at 1 MHz offset resulting in a FOM of −172.14 to −176.69 dBc/Hz.  相似文献   

11.
This letter presents a charge-recycling VCO and divider in 0.18 $mu$m CMOS technology. The power consumption of the proposed circuit is significantly reduced by stacking the low-voltage divider on the top of the low-voltage VCO, and hence, the VCO reuses the current from the divider. To enhance the reliability of the proposed circuit under supply voltage variation, transistor sharing and adaptive body-biasing techniques are employed. It allows the proposed circuit to operate down to 1.45 V of supply voltage without degrading the FoM. Experimental results show that the proposed circuit achieves 900 $mu$W of power consumption and ${-}184$ dBc/Hz of FoM at 1.8 V.   相似文献   

12.
In this work a new low-noise low-power Colpitts quadrature voltage controlled oscillator (QVCO) made by coupling two identical current-switching differential Colpitts voltage controlled oscillators (VCO) is proposed; coupling of the VCOs is done using some capacitors in an “in-phase anti-phase” scheme. In this coupling configuration first harmonics (as well as higher harmonics) from each VCO are injected to the other VCO, as opposed to coupling schemes in which only even harmonics are injected. An analysis of the linearized circuit which confirms 90° phase difference between output signals of the proposed circuit is presented. Since no extra noise sources or power consumption are introduced to the core VCOs, the proposed QVCO achieves low phase noise performance and low power consumption. The proposed circuit is designed and simulated in a commercial 0.18 μm CMOS technology. The simulated phase noise of the proposed QVCO at 3 MHz offset frequency is ?138.3 dBc/Hz, at 6 GHz. The circuit dissipates 8.16 mW from a 1.8 V supply and its frequency can be tuned from 5.6 to 6.3 GHz.  相似文献   

13.
A 25-GHz monolithic voltage controlled oscillator (VCO) has been designed and fabricated in a commercial InGaP/GaAs heterojunction bipolar transistor (HBT) process. This balanced VCO has a novel topology using a feedback /spl pi/-network and a common-emitter transistor configuration. Ultra-low phase noise is achieved: -106 dBc/Hz and -130 dBc/Hz at 100kHz and 1-MHz offset frequency, respectively. To the authors' knowledge, this is the lowest phase noise achieved in a monolithic microwave integrated circuit (MMIC) VCO at such high frequency. The single-ended output power is -1 dBm. It can be tuned between 25.33GHz and 25.75GHz using the base-collector junction capacitor of the HBT as a varactor. The dc power consumption is 90mW for a 9-V supply. An excellent figure-of-merit of -195 dBc/Hz is obtained.  相似文献   

14.
A novel circuit topology for low-phase-noise voltage controlled oscillators (VCOs) is presented in this letter. By employing a PMOS cross-coupled pair with a capacitive feedback, superior circuit performance can be achieved especially at higher frequencies. Based on the proposed architecture, a prototype VCO implemented in a 0.18-/spl mu/m CMOS process is demonstrated for K-band applications. From the measurement results, the VCO exhibits a 510-MHz frequency tuning range at 20GHz. The output power and the phase noise at 1-MHz offset are -3dBm and -111dBc/Hz, respectively. The fabricated circuit consumes a dc power of 32mW from a 1.8-V supply voltage.  相似文献   

15.
A low-power voltage-controlled oscillator (VCO) with current-switched technique is presented. The circuit is implemented in 0.18-μm CMOS technology. In the design, a large inductor is used for low-power and low-phase-noise application, whereas a switched capacitor bank and two pairs of MOS varactors are adopted for coarse tuning and fine tuning respectively. The proposed VCO is biased at the boundary of the current and voltage limited region for a good trade-off between power consumption and phase noise. The phase noise of the proposed VCO is reduced in each sub-band by a current-switched technique, and a phase noise improvement of as much as 2.75 dB has been achieved. The proposed VCO has a measured tuning range of 15.2 % from 4.34 to 5.05 GHz and dissipates an average power of 3.78 mW at 1.2 V supply voltage, whereas its measured phase noise and figure of merit FOMT are ?113.0 dBc/Hz and ?183.7 at 1 MHz offset from the frequency of 4.36 GHz respectively.  相似文献   

16.
基于TSMC 0.13μm CMOS工艺设计并实现了应用于IMT-Advanced和UWB系统的双频段宽带频率合成器中的电感电容压控振荡器(LC-VCO)。此压控振荡器的设计采用了开关电流源、开关交叉耦合对和噪声滤波等技术,以优化电路的相位噪声,功耗,振荡幅度,调谐范围等性能。为达到宽的调谐范围,核心电路采用了4比特可重构的开关电容调谐阵列。整个芯片包括焊盘面积为1.11′0.98 mm2。测试结果表明,在1.2V电源电压下,两个频段压控振荡器所消耗的电流分别为3mA和4.5mA,压控振荡器的调谐范围为3.86~5.28GHz和3.14~3.88GHz。在振荡频率3.5GHz和4.2GHz上,1MHz频偏处,压控振荡器的相位噪声分别为-123dBc/Hz与-119dBc/Hz。  相似文献   

17.
A novel voltage controlled oscillation (VCO) topology using 90-m CMOS technology is demonstrated. The common-source PMOS single transistor integrated with an inductor leads to negative resistance for the VCO that minimizes the transistor size and decreases the flicker noise sources. To our knowledge, the topology of the core VCO is the most compact configuration ever reported. The fabricated VCO consumes 6.26mW with a supply voltage of 1 V and has a 1.68times1.41 mm2 chip area, including the ESD protection circuit. At 1.77 GHz, PMOS VCO features an output power in the range of -5.2 dBm, and exhibits a phase noise of -94 dBc/Hz at the offset frequency of 300 kHz and -107 dBc/Hz at 1MHz  相似文献   

18.
A novel circuit topology suitable for millimeter-wave voltage-controlled oscillators (VCOs) is presented. With the admittance-transforming technique, the proposed VCO can operate at a frequency close to the fmax of the transistors while maintaining remarkable circuit performance in terms of phase noise, tuning range, and output power. Using a standard micrometer CMOS process, a U-band VCO is implemented for demonstration. The fabricated circuit exhibits a frequency tuning range of 1.1 GHz in the vicinity of 50 GHz. The measured output power and phase noise at 1-MHz offset are -11 dBm and -101 dBc/Hz, respectively. Operated at a supply voltage of 1.8 V, the VCO core consumes a DC power of 45 mW.  相似文献   

19.
This letter presents an integrated direct-injection locked quadrature voltage controlled oscillator (VCO), consisted of a 5-GHz VCO integrated with injection locked LC frequency dividers for low-power quadrature generation. The circuit is implemented using a standard 0.18-mum CMOS process. The differential VCO is a full PMOS Colpitts oscillator, and the frequency divider is performed by adding an injection nMOS between the differential outputs of complementary cross-coupled np-core LC VCO. The measurement results show that at the supply voltage of 1.8-V, the master 5-GHz VCO is tunable from 4.73 to 5.74GHz, and the slave 2.5-GHz VCO is tunable from 2.36 to 2.87GHz. The measured phase noise of master VCO is -118.2dBc/Hz while the locked quadrature output phase noise is -124.4dBc/Hz at 1-MHz offset frequency, which is 6.2dB lower than the master VCO. The core power consumptions are 7.8 and 8.7mW at master and slave VCOs, respectively  相似文献   

20.
This paper presents a CMOS based LC tank VCO topology improving the tuning range linearity. The VCO tuning range is linearized with PMOS varactors which remain in the inversion region for an extended range of the control voltage. This is achieved with the design of the quiescent operating point in the VCO's output nodes with a value close to the voltage rails, letting the varactors to behave quasi linearly in the achievable VCO tuning range. The experimental results of a VCO in a CMOS 0.35 µm process show a linear tuning range improvement of 75% of the control voltage in the (1.43–1.55) GHz range, with a minimum VCO gain variation compared to similar architectures. The results show a phase noise improvement from −94 dBc/Hz to −124 dBc/Hz @600 kHz offset from the carrier with an overall reduced amplitude noise for the VCO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号