首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial-mediated synergistic cancer therapy (BMSCT) is used as a promising tumor therapy approach. However, there are some disadvantages of bacterial therapy alone to be resolved, such as low tumor suppression rate in the treatment. In this study, a novel light-controlled engineered bacterial material which synergistically regulates amino acid metabolism to fight tumors is developed. It transcribes l -methionine-γ-lyase (MdeA) into Escherichia coli (E. coli) and loads the approved photothermal agent indocyanine green (ICG), namely E. coli-MdeA@ICG. Using the hypoxic tropism of E. coli, genetically engineered bacteria are first loaded with photothermal agents, then selectively accumulate and replicate in the tumor region. Under laser irradiation, photothermal lysis of E. coli-MdeA is performed to release the MdeA and consume the essential amino acid methionine (Met) in the tumor environment. In vitro cell experiments confirm that the E. coli-MdeA + NIR group can reach 90% of the 4T1 cells killing. In 4T1 tumor-bearing mouse models, E. coli-MdeA@ICG shows enhanced antitumor efficacy, along with 91.8% of the tumor growth inhibited. Apoptosis of tumor cells is induced under the dual action of photothermal therapy (PTT) and amino acid metabolism therapy. This strategy provides new ideas for the combination of synthetic biology and nanotechnology in anti-tumor.  相似文献   

2.
Post-surgical tumor recurrence remains a major clinical concern for patients with malignant solid tumors. Herein, an immunotherapeutic hydrogel (SAPBA/ZMC/ICG) is developed by incorporating metal ion-cyclic dinucleotide (CDN) nanoparticles (Zn-Mn-CDN, ZMC) and a photosensitizer (indocyanine green, ICG) into phenylboronic acid (PBA)-conjugated sodium alginate (SAPBA) for photothermal therapy (PTT)-triggered in situ vaccination to inhibit post-surgical recurrence and metastasis of malignant tumors. The gelation of SAPBA/ZMC/ICG in the residual tumors can achieve accurate local PTT and the local sustained release of CDN and Mn2+ with minimal detrimental off-target toxic effects. Furthermore, CDN, which is an agonist of the stimulator of interferon genes (STING), along with Mn2+ can activate the STING pathway and trigger type-I-IFN-driven immune responses against tumors. Therefore, the immunotherapeutic hydrogel with enhanced immune response by STING agonist and PTT-induced immunogenic cell death (ICD) reprograms the post-surgical immunosuppressive microenvironment, substantially decreasing the post-surgical recurrence and metastasis of solid tumors in multiple murine tumor models when administered during surgical resection. Taken together, PTT-triggered and STING-mediated in situ cancer vaccination is an effective therapeutic intervention for post-surgical recurrence and metastasis of tumors.  相似文献   

3.
A novel nanoplatform based on tungsten oxide (W18O49, WO) and indocyanine green (ICG) for dual‐modal photothermal therapy (PTT) and photodynamic therapy (PDT) has been successfully constructed. In this design, the hierarchical unique nanorod‐bundled W18O49 nanostructures play roles in being not only as an efficient photothermal agent for PTT but also as a potential nanovehicle for ICG molecules via electrostatic adsorption after modified with trimethylammonium groups on their surface. It is found that the ability of ICG to produce cytotoxic reactive oxygen species for PDT is well maintained after being attached on the WO, thus the as‐obtained WO@ICG can achieve a synergistic effect of combined PTT and PDT under single 808 nm near‐infrared (NIR) laser excitation. Notably, compared with PTT or PDT alone, the enhanced HeLa cells lethality of the 808 nm laser triggered dual‐modal therapy is observed. The in vivo animal experiments have shown that WO@ICG has effective solid tumor ablation effect with 808 nm NIR light irradiation, revealing the potential of these nanocomposites as a NIR‐mediated dual‐modal therapeutic platform for cancer treatment.  相似文献   

4.
Photothermal therapy (PTT) is of particular importance as a highly potent therapeutic modality in cancer therapy. However, a critical challenge still remains in the exploration of highly effective strategy to maximize the PTT efficiency due to tumor thermoresistance and thus frequent tumor recurrence. Here, a rational fabrication of the micelles that can achieve mutual synergy of PTT and molecularly targeted therapy (MTT) for tumor ablation is reported. The micelles generate both distinct photothermal effect from Cypate through enhanced photothermal conversion efficiency and pH‐dependent drug release. The micelles further exhibit effective cytoplasmic translocation of 17‐allylamino‐17‐demethoxygeldanamycin (17AAG) through reactive oxygen species mediated lysosomal disruption caused by Cypate under irradiation. Translocated 17AAG specifically bind with heat shock protein 90 (HSP90), thereby inhibiting antiapoptotic p‐ERK1/2 proteins for producing preferable MTT efficiency through early apoptosis. Meanwhile, translocated 17AAG molecules further block stressfully overexpressed HSP90 under irradiation and thus inhibit the overexpression of p‐Akt for achieving the reduced thermoresistance of tumor cells, thus promoting the PTT efficiency through boosting both early and late apoptosis of Cypate. Moreover, the micelles possess enhanced resistance to photobleaching, preferable cellular uptake, and effective tumor accumulation, thus facilitating mutually synergistic PTT/MTT treatments with tumor ablation. These findings represent a general approach for potent cancer therapy.  相似文献   

5.
The tumor growth and metastasis is the leading reason for the high mortality of breast cancer. Herein, it is first reported a deep tumor‐penetrating photothermal nanotherapeutics loading a near‐infrared (NIR) probe for potential photothermal therapy (PTT) of tumor growth and metastasis of breast cancer. The NIR probe of 1,1‐dioctadecyl‐3,3,3,3‐tetramethylindotricarbocyanine iodide (DiR), a lipophilicfluorescent carbocyanine dye with strong light‐absorbing capability, is entrapped into the photothermal nanotherapeutics for PTT application. The DiR‐loaded photothermal nanotherapeutics (DPN) is homogeneous nanometer‐sized particles with the mean diameter of 24.5 ± 4.1 nm. Upon 808 nm laser irradiation, DPN presents superior production of thermal energy than free DiR both in vitro and in vivo. The cell proliferation and migration activities of metastatic 4T1 breast cancer cells are obviously inhibited by DPN in combination with NIR irradiation. Moreover, DPN can induce a higher accumulation in tumor and penetrate into the deep interior of tumor tissues. The in vivo PTT measurements indicate that the growth and metastasis of breast cancer are entirely inhibited by a single treatment of DPN with NIR irradiation. Therefore, the deep tumor‐penetrating DPN can provide a promising strategy for PTT of tumor progression and metastasis of breast cancer.  相似文献   

6.
Tumor adaptive treatment tolerance associated with chemotherapy originates from low tumor accumulation and adverse effects and remains a formidable challenge for cancer therapy. Herein, human serum albumin (HSA)‐based nanomedicines modified with diazirine and loaded with indocyanine green (ICG) and tirapazamine (TPZ), denoted as ICG/TPZ@HSA dNMs are developed. The obtained ICG/TPZ@HSA dNMs can efficiently eradicate the tumors through a cascade of synergistic events triggered by the sequential irradiation of lasers in the tumor area. Upon a 405 nm laser irradiation, the ICG/TPZ@HSA dNMs are able to form aggregates via crosslinking and thus realized enhanced tumor site accumulation and prolonged retention time. The following irradiation at tumor area with an 808 nm laser‐generated local hyperthermia and reactive oxygen species, which results in efficient tumor ablation and increased local hypoxia in the tumor microenvironment. The resulted local hypoxia further activates the initially nontoxic TPZ to a highly cytotoxic derivative, by which precisely bioactivated chemotherapy is achieved following the phototherapy. Thus, upon the laser irradiations, a cascade of aggregation, phototherapy, and bioactivated chemotherapy is successfully triggered, which achieves efficient precise eradication of tumors without detectable side effects in vivo.  相似文献   

7.
Combination cancer immunotherapy has shown promising potential for simultaneously eliciting antitumor immunity and modulating the immunosuppressive tumor microenvironment (ITM). However, combination immunotherapy with multiple regimens suffers from the varied chemo‐physical properties and inconsistent pharmacokinetic profiles of the different therapeutics. To achieve tumor‐specific codelivery of the immune modulators, an indocyanine green (ICG)‐templated self‐assembly strategy for preparing dual drug‐loaded two‐in‐one nanomedicine is reported. ICG‐templated self‐assembly of paclitaxel (PTX) nanoparticles (ISPN), and the application of ISPN for combination immunotherapy of the triple negative breast cancer (TNBC) are demonstrated. The ISPN show satisfied colloidal stability and high efficacy for tumor‐specific codelivery of ICG and PTX through the enhanced tumor permeability and retention effect. Upon laser irradiation, the ICG component of ISPN highly efficiently induces immunogenic cell death of the tumor cells via activating antitumor immune response through photodynamic therapy. Meanwhile, PTX delivered by ISPN suppresses the regulatory T lymphocytes (Tregs) to combat ITM. The combination treatment of TNBC with ISPN and αPD‐L1‐medaited immune checkpoint blockade therapy displays a synergistic effect on tumor regression, metastasis inhibition, and recurrence prevention. Overall, the ICG‐templated nanomedicine may represent a robust nanoplatform for combination immunotherapy.  相似文献   

8.
Cancer recurrence and metastasis after surgical resection is a vital reason of treatment failure. The modification of immune cells through implanted biomaterials is a promising postoperative immunotherapy. Herein, an injectable hydrogel scaffold loaded with engineered exosome mimetics that in vivo recruits and programs endogenous macrophages into M1 binding with anti-CD47 antibody (M1-aCD47 macrophages) for postoperative cancer immunotherapy is developed. Briefly, M1 macrophages-derived exosome mimetics co-modified with vesicular stomatitis virus glycoprotein (VSV-G) and aCD47 (V-M1EM-aCD47) are encapsulated in injectable chitosan hydrogel. Such hydrogel recruits inherent macrophages in situ and releases V-M1EM-aCD47 that programs M2 to M1-aCD47 macrophages. M1-aCD47 macrophages own dual-functions of tumor-homing and enhanced phagocytosis. They can actively target to tumor cells for delivery of aCD47 that blocks the “don't eat me” signal, thereby promoting phagocytosis of macrophages to cancer cells. Furthermore, V-M1EM-aCD47 hydrogel implanted into resection site of 4T1 breast tumor inhibits tumor recurrence and metastasis by phagocytosis of M1-aCD47 macrophages and T cell-mediated immune responses. The findings demonstrate that biomaterials can be designed in vivo to program inherent macrophages, thereby activating the innate and adaptive immune systems for prevention of postoperative tumor recurrence and metastasis.  相似文献   

9.
Precise delivery of extracellularly functional protein drugs is limited by the drawback in that the protective carrier often causes undesirable cellular uptake of these therapeutic agents. Here, the design of a weakly cell‐interacted, nanosized, environment‐responsive vehicle (WINNER) with rational phosphorylcholine (PC) surface filling ratios capable of precise extracellular delivery of therapeutic agents for enhanced tumor suppression is reported. Highly hydrophilic zwitterionic PC and enzyme‐responsive peptides are engineered into the functional shell of WINNER which reasonably covers the inner protein. It is demonstrated that rationally controlled PC surface filling ratios (50.5–58.3%) are necessary for weakening interactions between the cell and WINNER whilst providing enough sites on WINNER for enzyme recognition. Consequently, WINNER (50.5–58.3%) can protect inner cargos from cellular uptake and undergo enzymatic degradation, resulting in precise extracellular release of inner protein, such as therapeutic monoclonal antibody (mAb). After intravenous administration, therapeutic mAb nimotuzumab‐loaded WINNER (51.2%) shows highest in vivo antitumor activity compared with free nimotuzumab or nimotuzumab‐loaded PC‐free nanocarrier in a lung adenocarcinoma xenograft tumor animal model. This work presents a simple and flexible approach to design precise extracellular delivery platform which can uncage the therapeutic power of extracellular targeting therapeutic agents.  相似文献   

10.
Compared with conventional tumor photothermal therapy (PTT), mild‐temperature PTT brings less damage to normal tissues, but also tumor thermoresistance, introduced by the overexpressed heat shock protein (HSP). A high dose of HSP inhibitor during mild‐temperature PTT might lead to toxic side effects. Glucose oxidase (GOx) consumes glucose, leading to adenosine triphosphate supply restriction and consequent HSP inhibition. Therefore, a combinational use of an HSP inhibitor and GOx not only enhances mild‐temperature PTT but also minimizes the toxicity of the inhibitor. However, a GOx and HSP inhibitor‐encapsulating nanostructure, designed for enhancing its mild‐temperature tumor PTT efficiency, has not been reported. Thermosensitive GOx/indocyanine green/gambogic acid (GA) liposomes (GOIGLs) are reported to enhance the efficiency of mild‐temperature PTT of tumors via synergistic inhibition of tumor HSP by the released GA and GOx, together with another enzyme‐enhanced phototherapy effect. In vitro and in vivo results indicate that this strategy of tumor starvation and phototherapy significantly enhances mild‐temperature tumor PTT efficiency. This strategy could inspire people to design more delicate platforms combining mild‐temperature PTT with other therapeutic methods for more efficient cancer treatment.  相似文献   

11.
Efficient nuclear delivery of anticancer drugs evading drug efflux transporters (DETs) on the plasma and nuclear membranes of multidrug‐resistant cancer cells is highly challenging. Here, smart nanogels are designed via a one‐step self‐assembly of three functional components including a biocompatible copolymer, a fluorescent organosilica nanodot, and a photodegradable near‐infrared (NIR) dye indocyanine green (ICG). The rationally designed nanogels have high drug encapsulation efficiency (≈99%) for anticancer drug doxorubicin (Dox), self‐traceability for bioimaging, proper size for passive tumor targeting, prolonged blood circulation time for enhanced drug accumulation in tumor, and photocontrolled disassemblability. Moreover, the Dox‐loaded nanogels can effectively kill multidrug‐resistant cells via two steps: 1) They behave like a “Trojan horse” to escape from the DETs on the plasma membrane for efficiently transporting the anticancer “soldier” (Dox) into the cytoplasm and preventing the drugs from being excreted from the cells; 2) Upon NIR light irradiation, the photodegradation of ICG leads to the disassembly of the nanogels to release massive Dox molecules, which can evade the DETs on the nuclear membrane to exert their intranuclear efficacy in multidrug‐resistant cells. Combined with their excellent biocompatibility, the nanogels may provide an alternative solution for overcoming cancer multidrug resistance.  相似文献   

12.
Hypoxia in the tumor microenvironment is a major hurdle dampening the antitumor effect of photodynamic therapy (PDT). Herein, active photosynthetic bacteria (Synechococcus 7942, Syne) are utilized for tumor‐targeted photosensitizer delivery and in situ photocatalyzed oxygen generation to achieve photosynthesis‐boosted PDT. Photosensitizer‐encapsulated nanoparticles (HSA/ICG) are assembled by intermolecular disulfide crosslinking and attached to the surface of Syne with amide bonds to form a biomimetic system (S/HSA/ICG). S/HSA/ICG combined the photosynthetic capability of Syne and the theranostic effect of HSA/ICG. Syne capable of photoautotrophy exhibit a moderate immune stimulation effect and a certain photodynamic role under 660 nm laser irradiation. Upon intravenous injection into tumor‐bearing mice, S/HSA/ICG can effectively accumulate in tumors and generate oxygen continuously under laser irradiation through photosynthesis, which remarkably relieve tumor hypoxia and enhance reactive oxygen species production, thereby completely eliminating primary tumors. This photosynthesis‐boosted PDT can also effectively reverse the tumor immunosuppressive microenvironment and robustly evoke systematic antitumor immune responses, which exhibit excellent effect on preventing tumor recurrence and metastasis inhibition in a metastatic triple‐negative breast cancer mouse model. Hence, this photosynthetic bacteria‐based photosynthesis‐boosted immunogenic PDT offers a promising approach to eliminate both local and metastatic tumors.  相似文献   

13.
Traditional targeting approach utilizing biological ligands has to face the problems of limited receptors and tumor heterogeneity. Herein, a two‐step tumor‐targeting and therapy strategy based on inverse electron‐demand [4+2] Diels–Alder cycloaddition (iEDDA) is described. Owing to the unique acidic tumor microenvironment, an intravenous injection of tetrazine modified pH (low) insertion peptide could efficiently target and incorporate onto various cell surfaces in tumor tissue, such as cancer cells, vascular endothelial cells, and tumor‐associated fibroblasts. The “receptor‐like” tetrazine groups with a large amount and homogeneous intratumoral distribution could then serve as the baits to greatly amplify the tumor‐targeting ability of indocyanine green (ICG)‐loaded and trans‐cyclooctene (TCO)‐conjugated human serum albumin (HSA) nanoparticles (TCO‐HSA‐ICG NPs) via iEDDA after the second intravenous injection. Compared with the passive enhanced permeability and retention (EPR) effect and traditional active targeting approaches, the targeting performance and photothermal therapeutic effect based on the two‐step strategy are significantly enhanced, while no notable toxicity is observed. As acidity is a characteristic of solid tumor, the two‐step strategy can serve as a universal and promising modality for safe and high‐performance nanoparticle‐based antitumor therapy.  相似文献   

14.
To achieve an accurate diagnosis and efficient tumor treatment, developing a facile and powerful strategy to build multifunctional nanotheranostics is highly desirable. Benefiting from the distinct characteristics of black phosphorus quantum dots (BPQDs), herein, a versatile nanoprobe (H-MnO2/DOX/BPQDs) is constructed for dual-modality cancer imaging and synergistic chemo-phototherapy. The hollow mesoporous MnO2 (H-MnO2) nanoparticles are sequentially decorated with a cationic polymer poly (allylamine hydrochloride) (PAH) and an anionic polymer poly (acrylic acid) (PAA). The obtained H-MnO2-PAH-PAA is covalently grafted with BPQDs-PEG-NH2 via a carbodiimide cross-linking reaction and then loaded with anti-cancer drug DOX to form final nanoprobe H-MnO2/DOX/BPQDs. Under the tumor microenvironment, H-MnO2/DOX/BPQDs is degraded to release encapsulated functional molecules DOX and BPQDs. DOX acts as the chemotherapy and fluorescence imaging agent, and BPQDs endows the nanoprobe with photodynamic therapy (PDT) and photothermal therapy (PTT) abilities under dual laser irradiation of 630 and 808 nm. H-MnO2 offers contrasts for magnetic resonance imaging (MRI) and facilitates conversion of endogenous H2O2 to oxygen, thereby relieving tumor hypoxia and enhancing PDT efficacy. All in vitro and in vivo results demonstrate that the designed nanoprobe displays dual-modality MRI/FL imaging and synergistic chemotherapy/PDT/PTT, which ultimately enhances the accuracy of cancer diagnosis and therapeutic performance.  相似文献   

15.
The possibility of functional roles played by platelets in close alliance with cancer cells has inspired the design of new biomimetic systems that exploit platelet–cancer cell interactions. Here, the role of platelets in cancer diagnostics is leveraged to design a microfluidic platform capable of detecting cancer‐derived extracellular vesicles (EVs) from ultrasmall volumes (1 µL) of human plasma samples. Further, the captured EVs are counted by direct optical coding of plasmonic nanoprobes modified with EV‐specific antibodies. Owing to the inherent properties of platelets for multifaceted interaction with cancer cells, the microfluidic chip equipped with a biologically interfaced platelet membrane‐cloaked surface (denoted “PLT‐Chip”) can capture a significantly higher number of EVs from multiple types of cancer cell lines (prostate, lung, bladder, and breast) than the normal cell‐derived EVs. Furthermore, this chip allows the monitoring of the growth of tumor spheroids (100 µm–2.5 mm) and clearly distinguishes the plasma of cancer patients from that of normal healthy controls. This robust, multifaceted, and cancer‐specific binding affinity, coupled with excellent biocompatibility, is a unique feature of platelet membrane‐cloaked surfaces, which therefore represent promising alternatives to antibodies for application in EVs‐based cancer theranostics.  相似文献   

16.
Nonspecific absorption and clearance of nanomaterials during circulation is the major cause for treatment failure in nanomedicine‐based cancer therapy. Therefore, herein bioinspired red blood cell (RBC) membrane is employed to camouflage 2D MoSe2 nanosheets with high photothermal conversion efficiency to achieve enhanced hemocompatibility and circulation time by preventing macrophage phagocytosis. RBC–MoSe2‐potentiated photothermal therapy (PTT) demonstrates potent in vivo antitumor efficacy, which triggers the release of tumor‐associated antigens to activate cytotoxic T lymphocytes and inactivate the PD‐1/PD‐L1 pathway to avoid immunologic escape. Furthermore, in the ablated tumor microenvironment, the tumor‐associated macrophages are effectively reprogrammed to tumoricidal M1 phenotype to potentiate the antitumor action. Taken together, this biomimetic functionalization thus provides a substantial advance in personalized PTT‐triggered immunotherapy for clinical translation.  相似文献   

17.
Photodynamic therapy (PDT) mediated by near‐infrared (NIR) dyes is a promising cancer treatment modality; however, its use is limited by significant challenges, such as hypoxic tumor microenvironments and self‐quenching of photosensitizers. These challenges hamper its utility in inducing immunogenic cell death (ICD) and triggering potent systemic antitumor immune responses. This study demonstrates that molecular dispersion of NIR dyes in nanocarriers can significantly enhance their ability to produce reactive oxygen species and potentiate synergistic PDT and photothermal therapy against tumors. Specifically, NIR dye indocyanine green (ICG) can be spontaneously adsorbed to covalent organic frameworks (COFs) via π–π conjugations to prevent intermolecular stacking interactions. Then, ICG‐loaded COFs are ultrasonically exfoliated and coated with polydopamine (PDA) to construct a new phototherapeutic agent ICG@COF‐1@PDA with enhanced efficacy. In conjunction with ICG@COF‐1@PDA, a single round of NIR laser irradiation can induce obvious ICD, elicit antitumor immunity in colorectal cancer, and yield 62.9% inhibition of untreated distant tumors. ICG@COF‐1@PDA also exhibits notable phototherapeutic efficacy against 4T1 murine breast to lung metastasis, a spontaneous metastasis mode for triple‐negative breast cancers (TNBCs). Overall, this study reveals a novel nanodelivery system for molecular dispersion of NIR dyes, which may present new therapeutic opportunities against primary and metastatic tumors.  相似文献   

18.
Compared to conventional photothermal therapy (PTT) which requires hyperthermia higher than 50 °C, mild-temperature PTT is a more promising antitumor strategy with much lower phototoxicity to neighboring normal tissues. However, the therapeutic efficacy of mild-temperature PTT is always restricted by the thermoresistance of cancer cells. To address this issue, a supramolecular drug nanocarrier is fabricated to co-deliver nitric oxide (NO) and photothermal agent DCTBT with NIR-II aggregation-induced emission (AIE) characteristic for mild-temperature PTT. NO can be effectively released from the nanocarriers in intracellular reductive environment and DCTBT is capable of simultaneously producing reactive oxygen species (ROS) and hyperthermia upon 808 nm laser irradiation. The generated ROS can further react with NO to produce peroxynitrite (ONOOˉ) bearing strong oxidization and nitration capability. ONOOˉ can inhibit the expression of heat shock proteins (HSP) to reduce the thermoresistance of cancer cells, which is necessary to achieve excellent therapeutic efficacy of DCTBT-based PTT at mild temperature (<50 °C). The antitumor performance of ONOOˉ-potentiated mild-temperature PTT is validated on subcutaneous and orthotopic hepatocellular carcinoma (HCC) models. This research puts forward an innovative strategy to overcome thermoresistance for mild-temperature PTT, which provides new inspirations to explore ONOOˉ-sensitized tumor therapy strategies.  相似文献   

19.
Nanoparticles possess the potential to revolutionize cancer diagnosis and therapy. The ideal theranostic nanoplatform should own long system circulation and active cancer targeting. Additionally, it should be nontoxic and invisible to the immune system. Here, the authors fabricate an all‐in‐one nanoplatform possessed with these properties for personalized cancer theranostics. Platelet‐derived vesicles (PLT‐vesicles) along with their membrane proteins are collected from mice blood and then coated onto Fe3O4 magnetic nanoparticles (MNs). The resulting core–shell PLT‐MNs, which inherit the long circulation and cancer targeting capabilities from the PLT membrane shell and the magnetic and optical absorption properties from the MN core, are finally injected back into the donor mice for enhanced tumor magnetic resonance imaging (MRI) and photothermal therapy (PTT). Meanwhile, it is found that the PTT treatment impels PLT‐MNs targeting to the PTT sites (i.e., tumor sites), and exactly, in turn, the enhanced targeting of PLT‐MNs to tumor sites can improve the PTT effects. In addition, since the PLT membrane coating is obtained from the mice and finally injected into the same mice, PLT‐MNs exhibit stellar immune compatibility. The work presented here provides a new angle on the design of biomimetic nanoparticles for personalized diagnosis and therapy of various diseases.  相似文献   

20.
Realizing precise control of the therapeutic process is crucial for maximizing efficacy and minimizing side effects, especially for strategies involving gene therapy (GT). Herein, a multifunctional Prussian blue (PB) nanotheranostic platform is first designed and then loaded with therapeutic plasmid DNA (HSP70‐p53‐GFP) for near‐infrared (NIR) light‐triggered thermo‐controlled synergistic GT/photothermal therapy (PTT). Due to the unique structure of the PB nanocubes, the resulting PB@PEI/HSP70‐p53‐GFP nanoparticles (NPs) exhibit excellent photothermal properties and pronounced tumor‐contrast performance in T1/T2‐weighted magnetic resonance imaging. Both in vitro and in vivo studies demonstrate that mild NIR‐laser irradiation (≈41 °C) activates the HSP70 promoter for tumor suppressor p53‐dependent apoptosis, while strong NIR‐laser irradiation (≈50 °C) induces photothermal ablation for cellular dysregulation and necrosis. Significant synergistic efficacy can be achieved by adjusting the NIR‐laser irradiation (from ≈41 to ≈50 °C), compared to using GT or PTT alone. In addition, in vitro and in vivo toxicity studies demonstrate that PB@PEI/HSP70‐p53‐GFP NPs have good biocompatibility. Therefore, this work provides a promising theranostic approach for controlling combined GT and PTT via the heat‐shock response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号