首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineering core-shell materials with rationally designed architectures and components is an effective strategy to fulfill the high-performance requirements of supercapacitors. Herein, hierarchical candied-haws-like NiCo2S4@NiCo(HCO3)2 core-shell heterostructure (NiCo2S4@HCs) is designed with NiCo(HCO3)2 polyhedrons being tightly strung by cross-linked NiCo2S4 nanowires. This rational design not only creates more electroactive sites but also suppresses the volume expansion during the charge–discharge processes. Meanwhile, density functional theory calculations ascertain that the formation of NiCo2S4@HCs heterostructure simultaneously facilitates OH adsorption/desorption and accelerates electron transfer within the electrode, boosting fast and efficient redox reactions. Ex situ X-ray diffraction and Raman measurements reveal that gradual phase transformations from NiCo(HCO3)2 to NiCo(OH)2CO3 and then to highly-active NiCoOOH take place during the cycles. Therefore, NiCo2S4@HCs demonstrates an ultrahigh capacitance of 3178.2 F g−1 at 1 A g−1 and a remarkable rate capability of 2179.3 F g−1 at 30 A g−1. In addition, the asymmetric supercapacitor NiCo2S4@HCs//AC exhibits a high energy density of 69.6 W h kg−1 at the power density of 847 W kg−1 and excellent cycling stability with 90.2% retained capacitance after 10 000 cycles. Therefore, this novel structural design has effectively manipulated the interface charge states and guaranteed the structural integrity of electrode materials to achieve superior electrochemical performances.  相似文献   

2.
Hybrid supercapacitors use electric double-layer capacitance and Faradaic pseudocapacitance as energy storage mechanisms. This type of supercapacitor is becoming a prime candidate for next-generation energy storage devices, with advantages in terms of energy density, specific capacitance, and life cycle. However, reducing the electrode area and increasing the specific capacitance of hybrid supercapacitors remain challenging. In this study, a MoCl5 Precursor-assisted Ultrafast Laser Carbonization (MPAULC) method to fabricate symmetric hybrid supercapacitors with improved capacitance and reduced size is proposed. The method uses an ultrafast laser to induce the formation of carbon/MoO3 composite with the assistance of the MoCl5 precursor. This ultrafast laser carbonization method exhibited high processing precision. The role of the precursor in laser processing is studied using time-resolved imaging and temperature calculations. The specific area capacitance of the C/MoO3 hybrid supercapacitor is 11.85 mF cm−2, 9.2 times higher than that of the laser-induced carbon supercapacitor without precursor. The MPAULC method provides a reliable pathway for fabricating miniaturized hybrid supercapacitors with carbon/metal oxide composite electrodes on polymer substrates.  相似文献   

3.
Multifunctional electrodes for structural supercapacitors are prepared by vacuum infiltration of single-walled carbon nanotubes (SWCNTs) into woven carbon fibers (CFs); the use of reductive charging chemistry to form nanotubide solutions ensured a high degree of individualization. The route is highly versatile, as shown by comparing four different commercial nanotube feedstocks. In film form, the pure nanotubide networks (“buckypapers”) are highly conductive (up to 2000 S cm−1) with high surface area (>1000 m2 g−1) and great electrochemical performance (capacitance of 101 F g−1, energy density of 27.5 Wh kg−1 and power density of 135 kW kg−1). Uniformly integrating these SWCNT networks throughout the CF fabrics significantly increased electrical conductivity (up to 318 S cm−1), surface area (up to 196 m2 g−1), and in-plane shear properties, all simultaneously. The CNT-infiltrated CFs electrodes exhibited intrinsically high specific energy (2.6–4.2 Wh kg−1) and power (6.0–8.7 kW kg−1) densities in pure 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI) electrolyte. Multifunctional structural supercapacitors based on CNT-coated CFs offer a substantial increase in capacitive performance while maintaining the tensile mechanical properties of the as-received CF-based composite. This non-damaging approach to modify CFs with highly graphitic, high surface area nanocarbons provides a new route to structural energy storage systems.  相似文献   

4.
Manganese dioxide (MnO2) materials have received much attention as promising pseudocapacitive materials owing to their high theoretical capacitance and natural abundance. Unfortunately, the charge storage performance of MnO2 is usually limited to commercially available mass loading electrodes because of the significantly lower electron and ion migration kinetics in thick electrodes. Here, an alternatively assembled 2D layered material consisting of exfoliated MnO2 nanosheets and nitrogen-doped carbon layers for ultrahigh-mass-loading supercapacitors without sacrificing energy storage performance is reported. Layered birnessite-type MnO2 is efficiently exfoliated and intercalated by a carbon precursor of dopamine using a fluid dynamic-induced process, resulting in MnO2/nitrogen-doped carbon (MnO2/C) materials after self-polymerization and carbonization. The alternatively stacked and interlayer-expanded structure of MnO2/C enables fast and efficient electron and ion transfer in a thick electrode. The resulting MnO2/C electrode shows outstanding electrochemical performance at an ultrahigh mass loading of 19.7 mg cm−2, high gravimetric and areal capacitances of 480.3 F g−1 and 9.4 F cm−2 at 0.5 mA cm−2, and rapid charge/discharge capability of 70% capacitance retention at 40 mA cm−2. Furthermore, asymmetric supercapacitor based on high-mass-loading MnO2/C can deliver an extremely high energy of 64.2 Wh kg−1 at a power density of 18.8 W kg−1 in an aqueous electrolyte.  相似文献   

5.
Graphene derivatives are promising candidates as electrode materials in supercapacitor cells, therefore, functionalization strategies are pursued to improve their performance. A scalable approach is reported for preparing a covalently and homogenously functionalized graphene with iron tetraaminophthalocyanine (FePc‐NH2) with a high degree of functionalization. This is achieved by exploiting fluorographene's reactivity with the diethyl bromomalonate, producing graphene‐dicarboxylic acid after hydrolysis, which is conjugated with FePc‐NH2. The material exhibits an ultrahigh gravimetric specific capacitance of 960 F g?1 at 1 A g?1 and zero losses upon charging–discharging cycling. The energy density of 59 Wh kg?1 is eminent among supercapacitors operating in aqueous electrolytes with graphene‐based electrode materials. This is attributed to the structural and functional synergy of the covalently bound components, giving rise to a zwitterionic surface with extensive π–π stacking, but not graphene restacking, all being very beneficial for charge and ionic transport. The safety of the proposed system, owing to the benign Na2SO4 aqueous electrolyte, the high capacitance, energy density, and potential of preparing the electrode material on a large‐scale and at low cost make the reported strategy very attractive for development of supercapacitors based on the covalent attachment of suitable molecules onto graphene toward high‐synergy hybrids.  相似文献   

6.
Mo‐based binary oxides (MBOs) and Mo‐based ternary oxides (MTOs) are a research focus because of their widespread applications. The traditional synthesis routes for MBOs and MTOs require high temperature and are time intense. Here, a rapid, facile, and scalable strategy to efficiently fabricate MBOs and MTOs with various morphologies and crystal structures is reported. Only 1 min is required for the whole process and the yield is above 90%. This strategy is the simplest and the fastest method reported and exhibits large potential for application. Furthermore, the as‐synthesized Hx MoO3 nanobelts and NiMoO4·x H2O nanowires display a specific capacitance of 660.3 F g?1 at 2 mV s?1 and a specific capacity of 549 C g?1 at 1 A g?1. In addition, to assemble the Hx MoO3 and NiMoO4·x H2O electrodes together, the solid state hybrid electrolyte is employed to take advantage of MBOs and MTOs. The obtained NiMoO4·x H2O//Hx MoO3 device delivers a specific capacitance of 156 F g?1 at 0.8 A g?1 and an energy density of 55.6 Wh kg?1 at a power density of 640 W kg?1, making it attractive for application as an energy storage material.  相似文献   

7.
Asymmetric supercapacitors with high energy density are fabricated using a self‐assembled reduced graphene oxide (RGO)/MnO2 (GrMnO2) composite as a positive electrode and a RGO/MoO3 (GrMoO3) composite as a negative electrode in safe aqueous Na2SO4 electrolyte. The operation voltage is maximized by choosing two metal oxides with the largest work function difference. Because of the synergistic effects of highly conductive graphene and highly pseudocapacitive metal oxides, the hybrid nanostructure electrodes exhibit better charge transport and cycling stability. The operation voltage is expanded to 2.0 V in spite of the use of aqueous electrolyte, revealing a high energy density of 42.6 Wh kg?1 at a power density of 276 W kg?1 and a maximum specific capacitance of 307 F g?1, consequently giving rise to an excellent Ragone plot. In addition, the GrMnO2//GrMoO3 supercapacitor exhibits improved capacitance with cycling up to 1000 cycles, which is explained by the development of micropore structures during the repetition of ion transfer. This strategy for the choice of metal oxides provides a promising route for next‐generation supercapacitors with high energy and high power densities.  相似文献   

8.
The application of nontoxic 2D transition-metal carbides (MXenes) has recently gained ground in bioelectronics. In group-4 transition metals, tantalum possesses enhanced biological and physical properties compared to other MXene counterparts. However, the application of tantalum carbide for bioelectrodes has not yet been explored. Here, fluorine-free exfoliation and functionalization of tantalum carbide MAX-phase to synthesize a novel Ta4C3Tx MXene-tantalum oxide (TTO) hybrid structure through an innovative, facile, and inexpensive protocol is demonstrated. Additionally, the application of TTO composite as an efficient biocompatible material for supercapacitor electrodes is reported. The TTO electrode displays long-term stability over 10 000 cycles with capacitance retention of over 90% and volumetric capacitance of 447 F cm−3 (194 F g−1) at 1 mV s−1. Furthermore, TTO shows excellent biocompatibility with human-induced pluripotent stem cells-derived cardiomyocytes, neural progenitor cells, fibroblasts, and mesenchymal stem cells. More importantly, the electrochemical data show that TTO outperforms most of the previously reported biomaterials-based supercapacitors in terms of gravimetric/volumetric energy and power densities. Therefore, TTO hybrid structure may open a gateway as a bioelectrode material with high energy-storage performance for size-sensitive applications.  相似文献   

9.
Flexible energy storage devices play a pivotal role in realizing the full potential of flexible electronics. This work presents high‐performance, all‐solid‐state, flexible supercapacitors by employing an innovative multilevel porous graphite foam (MPG). MPGs exhibit superior properties, such as large specific surface area, high electric conductivity, low mass density, high loading efficiency of pseudocapacitive materials, and controlled corrugations for accommodating mechanical strains. When loaded with pseudocapacitive manganese oxide (Mn3O4), the MPG/Mn3O4 (MPGM) composites achieve a specific capacitance of 538 F g?1 (1 mV s?1) and 260 F g?1 (1 mV s?1) based on the mass of pure Mn3O4 and entire electrode composite, respectively. Both are among the best of Mn3O4‐based supercapacitors. The MPGM is mechanically robust and can go through 1000 mechanical bending cycles with only 1.5% change in electric resistance. When integrated as all‐solid‐state symmetric supercapacitors, they offer a full cell specific capacitance as high as 53 F g?1 based on the entire electrode and retain 80% of capacitance after 1000 continuous mechanical bending cycles. Furthermore, the all‐solid‐state flexible supercapacitors are incorporated with strain sensors into self‐powered flexible devices for detection of both coarse and fine motions on human skins, i.e., those from finger bending and heart beating.  相似文献   

10.
Batteries and supercapacitors are critical devices for electrical energy storage with wide applications from portable electronics to transportation and grid. However, rechargeable batteries are typically limited in power density, while supercapacitors suffer low energy density. Here, a novel symmetric Na‐ion pseudocapacitor with a power density exceeding 5.4 kW kg?1 at 11.7 A g?1, a cycling life retention of 64.5% after 10 000 cycles at 1.17 A g?1, and an energy density of 26 Wh kg?1 at 0.585 A g?1 is reported. Such a device operates on redox reactions occurring on both electrodes with an identical active material, viz., Na3V2(PO4)3 encapsulated inside nanoporous carbon. This device, in a full‐cell scale utilizing highly reversible and high‐rate Na‐ion intercalational pseudocapacitance, can bridge the performance gap between batteries and supercapacitors. The characteristics of the device and the potentially low‐cost production make it attractive for hybrid electric vehicles and low‐maintenance energy storage systems.  相似文献   

11.
2D MXenes have emerged as promising supercapacitor electrode materials due to their metallic conductivity, pseudo-capacitive mechanism, and high density. However, layer-restacking is a bottleneck that restrains their ionic kinetics and active site exposure. Herein, a carbon dots-intercalated strategy is proposed to fabricate flexible MXene film electrodes with both large ion-accessible active surfaces and high density through gelation of calcium alginate (CA) within the MXene nanosheets followed by carbonization. The formation of CA hydrogel within the MXene nanosheets accompanied by evaporative drying endow the MXene/CA film with high density. In the carbonization process, the CA-derived carbon dots can intercalate into the MXene nanosheets, increasing the interlayer spacing and promoting the electrolytic diffusion inside the MXene film. Consequently, the carbon dots-intercalated MXene films exhibit high volumetric capacitance (1244.6 F cm−3 at 1 A g−1), superior rate capability (662.5 F cm−3 at 1000 A g−1), and excellent cycling stability (93.5% capacitance retention after 30 000 cycles) in 3 m H2SO4. Additionally, an all-solid-state symmetric supercapacitor based on the carbon dots-intercalated MXene film achieves a high volumetric energy density of 27.2 Wh L−1. This study provides a simple yet efficient strategy to construct high-volumetric performance MXene film electrodes for advanced supercapacitors.  相似文献   

12.
Regarding the complex properties of various cations, the design of aqueous batteries that can simultaneously store multi-ions with high capacity and satisfactory rate performance is a great challenge. Here an amorphization strategy to boost cation-ion storage capacities of anode materials is reported. In monovalent (H+, Li+, K+), divalent (Mg2+, Ca2+, Zn2+) and even trivalent (Al3+) aqueous electrolytes, the capacity of the resulting amorphous MoOx is more than quadruple than that of crystalline MoOx and exceeds those of other reported multiple-ion storage materials. Both experimental and theoretical calculations reveal the generation of ample active sites and isotropic ions in the amorphous phase, which accelerates cation migration within the electrode bulk. Amorphous MoOx can be coupled with multi-ion storage cathodes to realize electrochemical energy storage devices with different carriers, promising high energy and power densities. The power density exceeded 15000 W kg−1, demonstrating the great potential of amorphous MoOx in advanced aqueous batteries.  相似文献   

13.
This work presents a design of sandwich MoO3/C hybrid nanostructure via calcination of the dodecylamine‐intercalated layered α‐MoO3, leading to the in situ production of the interlayered graphene layer. The sample with a high degree of graphitization of graphene layer and more interlayered void region exhibits the most outstanding energy storage performance. The obtained material is capable of delivering a high specific capacitance of 331 F g?1 at a current density of 1 A g?1 and retained 71% capacitance at 10 A g?1. In addition, nearly no discharge capacity decay between 1000 and 10 000 continuous charge–discharge cycles is observed at a high current density of 10 A g?1, indicating an excellent specific capacitance retention ability. The exceptional rate capability endows the electrode with a high energy density of 41.2 W h kg?1 and a high power density of 12.0 kW kg?1 simultaneously. The excellent performance is attributed to the sandwich hybrid nanostructure of MoO3/C with broad ion diffusion pathway, low charge‐transfer resistance, and robust structure at high current density for long‐time cycling. The present work provides an insight into the fabrication of novel electrode materials with both enhanced rate capability and cyclability for potential use in supercapacitor and other energy storage devices.  相似文献   

14.
Proton batteries have been considered as an innovative energy storage technology owing to their high safety and cost-effectiveness. However, the development of fast-charging proton batteries with high energy/power density is greatly limited by feasible material selection. Here, the pre-protonated vanadium hexacyanoferrate (H-VHCF) is developed as a proton cathode material to alleviate the capacity loss of proton-free electrode materials during electrochemical tests. The pre-protonation process realizes fast and long-distance transport of protons by shortening diffusion path and reducing migration barriers. Benefitting from the enhanced hydrogen bonding network combined with dual redox reactions of V and Fe in protonated H-VHCF cathode, a high energy density of 74 Wh kg−1 at 1.1 kW kg−1, and a maximum power density of 54 kW kg−1 at 65 Wh kg−1 is achieved for the asymmetric proton batteries coupling with MoO3/MXene anode. Proton transport and double oxidation-reduction center are verified by theoretical calculations and ex situ experimental measurements. Considering the anti-freezing availability of proton batteries, 82.5% of its initial capacity is maintained after 10000 cycles under −40 °C at 0.5 A g−1. As a proof-of-concept, flexible device fabricated by optimized electrodes and hydrogel electrolytes can power up a light-emitting diode even under a bent state.  相似文献   

15.
A rechargeable Li CO2 battery is one of the promising power sources for utilizing the greenhouse gas CO2 in a sustainable approach. However, highly efficient catalysts for reversible formation/decomposition of insulating discharge product, Li2CO3, are the main challenge, which can boost the cycle stability. Herein, 2D single-atom-thick graphdiyne (GDY) with abundant acetylenic bond sites is prepared by a bottom-up cross-coupling reaction strategy and used as metal-free catalysts for reversible Li CO2 batteries. The prepared GDY has a rich diacetylenic unit and atomic-level in-plane pores in the network, which can chemically adsorb the CO2 molecules and easily promote the Li+ diffusion and thereby resulting in uniform nucleation and reversible formation/decomposition of the discharge product. The GDY hybrid cathodes show a small overpotential gap of 1.4 V at a current density of 50 mA · g−1, a high full discharge capacity of 18 416 mAh · g−1 at 100 mA · g−1, and outstanding long-term stability of 158 cycles at 400 mA · g−1 with a curtailing capacity of 1000 mAh · g−1. Furthermore, a flexible belt-shaped Li CO2 battery is fabricated as a proof of concept with a high gravimetric energy density of 165.5 Wh · kg−1 (based on the mass of the whole device) as well as excellent mechanical flexibility.  相似文献   

16.
Na‐ion hybrid capacitors consisting of battery‐type anodes and capacitor‐style cathodes are attracting increasing attention on account of the abundance of sodium‐based resources as well as the potential to bridge the gap between batteries (high energy) and supercapacitors (high power). Herein, hierarchically structured carbon materials inspired by multiscale building units of cellulose from nature are assembled with cellulose‐based gel electrolytes into Na‐ion capacitors. Nonporous hard carbon anodes are obtained through the direct thermal pyrolysis of cellulose nanocrystals. Nitrogen‐doped carbon cathodes with a coral‐like hierarchically porous architecture are prepared via hydrothermal carbonization and activation of cellulose microfibrils. The reversible charge capacity of the anode is 256.9 mAh g?1 when operating at 0.1 A g?1 from 0 to 1.5 V versus Na+/Na, and the discharge capacitance of cathodes tested within 1.5 to 4.2 V versus Na+/Na is 212.4 F g?1 at 0.1 A g?1. Utilizing Na+ and ClO4? as charge carriers, the energy density of the full Na‐ion capacitor with two asymmetric carbon electrodes can reach 181 Wh kg?1 at 250 W kg?1, which is one of the highest energy devices reported until now. Combined with macrocellulose‐based gel electrolytes, all‐cellulose‐based quasi‐solid‐state devices are demonstrated possessing additional advantages in terms of overall sustainability.  相似文献   

17.
Aqueous zinc-ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and enlarge the electrochemical window is required. Herein, a 2.9 m (mol kgsolvent−1) Zn(ClO4)2−CO(NH2)2−H2O ternary aqueous eutectic electrolyte is prepared with restricted water activity at room temperature. The strong intermolecular interactions between CO(NH2)2 and H2O decrease the free H2O molecules and reduce their activity to suppress the parasitic reactions. Compared to conventional aqueous electrolytes, this urea-modified electrolyte exhibits similar ionic conductivity (6.83 mS cm−1) and viscosity (29.5 mPa s) but with a significantly expanded electrochemical stability window (2.6 V) than the conventional one (1.7 V). Additionally, the preferential adsorption and reduction of urea molecules on the zinc surface mediate the formation of an organic solid electrolyte interphase, which passivates the anode and facilitates homogeneous zinc deposition. As a result, this ternary aqueous electrolyte enables high-voltage zinc/vanadium batteries with a capacity of 125 mAh g−1 for 300 cycles at 5 A g−1. This finding demonstrates a low-cost and practicable approach for realizing stable aqueous zinc-ion batteries with an enlarged electrochemical stability window.  相似文献   

18.
The developments of rationally designed binder‐free metal chalcogenides decorated flexible electrodes are of paramount importance for advanced energy storage devices. Herein, binder‐free patronite (VS4) flower‐like nanostructures are facilely fabricated on a carbon cloth (CC) using a facile hydrothermal method for high‐performance supercapacitors. The growth density and morphology of VS4 nanostructures on CC are also controlled by varying the concentrations of vanadium and sulfur sources along with the complexing agent in the growth solution. The optimal electrode with an appropriate growth concentration (VS4‐CC@VS‐3) demonstrates a considerable pseudocapacitance performance in the ionic liquid (IL) electrolyte (1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate), with a high operating potential of 2 V. Utilizing VS4‐CC@VS‐3 as both positive and negative electrodes, the IL‐based symmetric supercapacitor is assembled, which demonstrates a high areal capacitance of 536 mF cm?2 (206 F g?1) and excellent cycling durability (93%) with superior energy and power densities of 74.4 µWh cm?2 (28.6 Wh kg?1) and 10154 µW cm?2 (9340 W kg?1), respectively. As for the high energy storage performance, the device stably energizes various portable electronic applications for a long time, which make the fabricated composite material open up news for the fabrication of fabrics supported binder‐free chalcogenides for high‐performance energy storage devices.  相似文献   

19.
Exploiting Zn metal-free anode materials would be an effective strategy to resolve the problems of Zn metal dendrites that severely hinder the development of Zn ion batteries (ZIBs). However, the study of Zn metal-free anode materials is still in their infancy, and more importantly, the low energy density severely limits their practical implementations. Herein, a novel (NH4)2V10O25 · 8H2O@Ti3C2Tx (NHVO@Ti3C2Tx) film anode is proposed and investigated for constructing “rocking-chair” ZIBs. The NHVO@Ti3C2Tx electrode shows a capacity of 514.7 mAh g−1 and presents low potential which is 0.59 V (vs Zn2+/Zn) at 0.1 A g−1. The introduction of Ti3C2Tx not only affords an interconnected conductive network, but also stabilizes the NHVO nanobelts structure for a long cycle life (84.2% retention at 5.0 A g−1 over 6000 cycles). As a proof-of-concept, a zinc metal-free full battery is successfully demonstrated, which delivers the highest capacity of 131.7 mAh g−1 (mass containing anodic and cathodic) and energy density of 97.1 Wh kg−1 compared to all reported aqueous “rocking-chair” ZIBs. Furthermore, a long cycling span of 6000 cycles is obtained with capacity retention reaching up to 92.1%, which is impressive. This work is expected to provide new moment toward V-based materials for “rocking-chair” ZIBs.  相似文献   

20.
Bismuth (Bi) has attracted considerable attention as promising anode material for sodium-ion batteries (NIBs) owing to its suitable reaction potential and high volumetric capacity density (3750 mA h cm−3). However, the large volumetric expansion during cycling causes severe structural degradation and fast capacity decay. Herein, by rational design, a self-healing nanostructure 3D continuous bulk porous bismuth (3DPBi) is prepared via facile liquid phase reduction reaction. The 3D interconnected Bi nanoligaments provide unblocked electronic circuits and short ion diffusion path. Meanwhile, the bicontinuous nanoporous network can realize self-healing the huge volume variation as confirmed by in situ and ex situ transmission electron microscopy observations. When used as the anode for NIBs, the 3DPBi delivers unprecedented rate capability (high capacity retention of 95.6% at an ultrahigh current density of 60 A g−1 with respect to 1 A g−1) and long-cycle life (high capacity of 378 mA h g−1 remained after 3000 cycles at 10 A g−1). In addition, the full cell of Na3V2(PO4)3|3DPBi delivers stable cycling performance and high gravimetric energy density (116 Wh kg−1), demonstrating its potential in practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号