首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Bacterial cellulose (BC) is used as both template and precursor for the synthesis of nitrogen‐doped carbon networks through the carbonization of polyaniline (PANI) coated BC. The as‐obtained carbon networks can act not only as support for obtaining high capacitance electrode materials such as activated carbon (AC) and carbon/MnO2 hybrid material, but also as conductive networks to integrate active electrode materials. As a result, the as‐assembled AC//carbon‐MnO2 asymmetric supercapacitor exhibits a considerably high energy density of 63 Wh kg?1 in 1.0 m Na2SO4 aqueous solution, higher than most reported AC//MnO2 asymmetric supercapacitors. More importantly, this asymmetric supercapacitor also exhibits an excellent cycling performance with 92% specific capacitance retention after 5000 cycles. Those results offer a low‐cost, eco‐friendly design of electrode materials for high‐performance supercapacitors.  相似文献   

2.
The use of non-metal charge carriers such as ammonium (NH4+) in electrochemical energy storage devices offers advantages in terms of weight, element abundance, and compatibility with aqueous electrolytes. However, the development of suitable electrodes for such carriers lags behind other technologies. Herein, we present a high-performance anode material for ammonium-ion supercapacitors based on a MoO3/carbon (MoO3@C) composite. The NH4+ storage performance of such composites and their practical application prospects are evaluated both in a three-electrode configuration and as symmetric supercapacitors. The optimized material reaches an unprecedented specific capacitance of 473 F·g−1 (158 mAh·g−1; 1592 mF·cm−2) at a current density of 1 A·g−1, and 92.7% capacitance retention after 5000 cycles in a three-electrode set-up. This outstanding performance is related to the presence of oxygen vacancies that enhance the composites’ ionic/electronic transportation and electrochemical reaction site, while at the same time facilitating the formation of hydrogen bonds between NH4+ and the host material. Using the optimized composite, symmetric supercapacitors based on an (NH4)2SO4 gel electrolyte are fabricated and demonstrated to provide unmatched energy densities above 78 Wh·kg−1 at a power density of 929 W·kg−1. Besides, such devices are characterized by extraordinary capacitance retention of 97.6% after 10,000 cycles.  相似文献   

3.
The demand for advanced energy storage devices such as supercapacitors and lithium‐ion batteries has been increasing to meet the application requirements of hybrid vehicles and renewable energy systems. A major limitation of state‐of‐art supercapacitors lies in their relatively low energy density compared with lithium batteries although they have superior power density and cycle life. Here, we report an additive‐free, nano‐architectured nickel hydroxide/carbon nanotube (Ni(OH)2/CNT) electrode for high energy density supercapacitors prepared by a facile two‐step fabrication method. This Ni(OH)2/CNT electrode consists of a thick layer of conformable Ni(OH)2 nano‐flakes on CNT bundles directly grown on Ni foams (NFs) with a very high areal mass loading of 4.85 mg cm?2 for Ni(OH)2. Our Ni(OH)2/CNT/NF electrode demonstrates the highest specific capacitance of 3300 F g?1 and highest areal capacitance of 16 F cm?2, to the best of our knowledge. An asymmetric supercapacitor using the Ni(OH)2/CNT/NF electrode as the anode assembled with an activated carbon (AC) cathode can achieve a high cell voltage of 1.8 V and an energy density up to 50.6 Wh/kg, over 10 times higher than that of traditional electrochemical double‐layer capacitors (EDLCs).  相似文献   

4.
Asymmetric supercapacitors with high energy density are fabricated using a self‐assembled reduced graphene oxide (RGO)/MnO2 (GrMnO2) composite as a positive electrode and a RGO/MoO3 (GrMoO3) composite as a negative electrode in safe aqueous Na2SO4 electrolyte. The operation voltage is maximized by choosing two metal oxides with the largest work function difference. Because of the synergistic effects of highly conductive graphene and highly pseudocapacitive metal oxides, the hybrid nanostructure electrodes exhibit better charge transport and cycling stability. The operation voltage is expanded to 2.0 V in spite of the use of aqueous electrolyte, revealing a high energy density of 42.6 Wh kg?1 at a power density of 276 W kg?1 and a maximum specific capacitance of 307 F g?1, consequently giving rise to an excellent Ragone plot. In addition, the GrMnO2//GrMoO3 supercapacitor exhibits improved capacitance with cycling up to 1000 cycles, which is explained by the development of micropore structures during the repetition of ion transfer. This strategy for the choice of metal oxides provides a promising route for next‐generation supercapacitors with high energy and high power densities.  相似文献   

5.
This work presents a design of sandwich MoO3/C hybrid nanostructure via calcination of the dodecylamine‐intercalated layered α‐MoO3, leading to the in situ production of the interlayered graphene layer. The sample with a high degree of graphitization of graphene layer and more interlayered void region exhibits the most outstanding energy storage performance. The obtained material is capable of delivering a high specific capacitance of 331 F g?1 at a current density of 1 A g?1 and retained 71% capacitance at 10 A g?1. In addition, nearly no discharge capacity decay between 1000 and 10 000 continuous charge–discharge cycles is observed at a high current density of 10 A g?1, indicating an excellent specific capacitance retention ability. The exceptional rate capability endows the electrode with a high energy density of 41.2 W h kg?1 and a high power density of 12.0 kW kg?1 simultaneously. The excellent performance is attributed to the sandwich hybrid nanostructure of MoO3/C with broad ion diffusion pathway, low charge‐transfer resistance, and robust structure at high current density for long‐time cycling. The present work provides an insight into the fabrication of novel electrode materials with both enhanced rate capability and cyclability for potential use in supercapacitor and other energy storage devices.  相似文献   

6.

Emissions of natural gas and carbon dioxide due to fossil fuels have become a global issue which influences the development of various technologies. Demand for clean renewable power sources is ever increasing. However, renewable sources are intermittent in nature, which poses a challenge in electricity generation and power load stability. Lately, supercapacitors have attracted remarkable interest in the field of electricity storage due to their ability to store large amounts of electric charge, enabling high power output. Reduced graphene oxide incorporated with titanium dioxide (rGO/TiO2) nanocomposites are well considered as potential supercapattery materials due to their superior mechanical properties, notable strength, and abundance in Nature. rGO carbon material acts as the ion reservoir, facilitating faster electron transfer mobility, whereas mesoporous TiO2 provides a larger surface area and more active sites, which improve the cycling stability and specific capacitance. Literature reports that supercapacitor performance mainly depends on the choice of the electroactive material, electrolyte, and current collector. This review focuses on recent developments in supercapacitor technology, storage mechanisms of different electrodes, a comprehensive discussion of different challenges related to energy storage devices, as well as the formation mechanism of rGO/TiO2 hybrid electrodes.

  相似文献   

7.
3D printing graphene aerogel with periodic microlattices has great prospects for various practical applications due to their low density, large surface area, high porosity, excellent electrical conductivity, good elasticity, and designed lattice structures. However, the low specific capacitance limits their development in energy storage fields due to the stacking of graphene. Therefore, constructing a graphene‐based 2D materials hybridization aerogel that consists of the pseduocapacitive substance and graphene material is necessary for enhancing electrochemical performance. Herein, 3D printing periodic graphene‐based composite hybrid aerogel microlattices (HAMs) are reported via 3D printing direct ink writing technology. The rich porous structure, high electrical conductivity, and highly interconnected networks of the HAMs aid electron and ion transport, further enabling excellent capacitive performance for supercapacitors. An asymmetric supercapacitor device is assembled by two different 4‐mm‐thick electrodes, which can yield high gravimetric specific capacitance (Cg) of 149.71 F g?1 at a current density of 0.5 A g?1 and gravimetric energy density (Eg) of 52.64 Wh kg?1, and retains a capacitance retention of 95.5% after 10 000 cycles. This work provides a general strategy for designing the graphene‐based mixed‐dimensional hybrid architectures, which can be utilized in energy storage fields.  相似文献   

8.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   

9.
Manganese dioxide (MnO2) materials have received much attention as promising pseudocapacitive materials owing to their high theoretical capacitance and natural abundance. Unfortunately, the charge storage performance of MnO2 is usually limited to commercially available mass loading electrodes because of the significantly lower electron and ion migration kinetics in thick electrodes. Here, an alternatively assembled 2D layered material consisting of exfoliated MnO2 nanosheets and nitrogen-doped carbon layers for ultrahigh-mass-loading supercapacitors without sacrificing energy storage performance is reported. Layered birnessite-type MnO2 is efficiently exfoliated and intercalated by a carbon precursor of dopamine using a fluid dynamic-induced process, resulting in MnO2/nitrogen-doped carbon (MnO2/C) materials after self-polymerization and carbonization. The alternatively stacked and interlayer-expanded structure of MnO2/C enables fast and efficient electron and ion transfer in a thick electrode. The resulting MnO2/C electrode shows outstanding electrochemical performance at an ultrahigh mass loading of 19.7 mg cm−2, high gravimetric and areal capacitances of 480.3 F g−1 and 9.4 F cm−2 at 0.5 mA cm−2, and rapid charge/discharge capability of 70% capacitance retention at 40 mA cm−2. Furthermore, asymmetric supercapacitor based on high-mass-loading MnO2/C can deliver an extremely high energy of 64.2 Wh kg−1 at a power density of 18.8 W kg−1 in an aqueous electrolyte.  相似文献   

10.
Recently, a new hybrid supercapacitor, integrating both the advantages of supercapacitors and lithium‐ion batteries, was proposed and rapidly turned into state‐of‐the‐art energy‐storage devices with a high energy density, fast power capability, and a long cycle life. In this paper, a new hybrid supercapacitor is fabricated by making use of the benefits of 1D nanomaterials consisting of a carbon nanotube (CNT) cathode and a TiO2–B nanowire (TNW) anode, and the preliminary results for such an energy‐storage device operating over a wide voltage range (0–2.8 V) are presented. The CNT–TNW supercapacitor is compared to a CNT–CNT supercapacitor, and discussed with regards to available energy densities, power capabilities, voltage profiles, and cycle life. On the basis of the total weight of both active materials, the CNT–TNW supercapacitor delivers an energy density of 12.5 W h kg–1 at a rate of 10 C, double the value of the CNT–CNT supercapacitor, while maintaining desirable cycling stability. The combination of a CNT cathode and a TNW anode in a non‐aqueous electrolyte is proven to be suitable for high‐performance hybrid supercapacitor applications; this can reasonably be assigned to the interesting synergistic effects of the two nanomaterials. It is hoped that the results presented in this study might renew interest in the design of nanomaterials that are applicable not only to hybrid supercapacitors, but also to energy conversion and storage applications of the future.  相似文献   

11.
The monolithic electrodes with high volumetric capacitance demonstrate a great potential in practical industrial applications for supercapacitors. Herein, a novel strategy for ultrafast self‐assembly of graphene oxides (GO)‐induced monolithic NiCo–carbonate hydroxide (NiCo–CH) nanowire composite films (G–CH) is reported. The oxygen‐containing functional groups on the GO surface help effectively to induce formation of the monodisperse NiCo–CH nanowires. Such a nanowire‐shaped structure further functions as a scaffold and/or support, leading to 25 s of ultrafast self‐assembly for G–CH composite films and a relatively loose and open channel that contributes to fast electrolyte transport. The as‐obtained monolithic G–CH architectures show an excellent supercapacitor performance as binder‐ and conductive agent‐free electrode, evidenced by a superior volumetric capacitance of 2936 F cm?3 and good electrochemical stability. Combining highly conductive carbon nanotubes (CNTs) into the monolithic composite films can further create well‐interconnected conductive networks within the electrode matrix, thus to improve the reaction kinetics and rate capability. The present strategy that can modulate the growth of the high‐electroactive pseudocapacitive hydroxides and achieve an ultrafast self‐assembly of monolithic composites may pave a promising new way for development of high‐performance supercapacitors and shed a new light on the configuration of carbon‐based electrode materials in energy storage and conversion devices.  相似文献   

12.
A novel method for fabricating micro‐patterned interdigitated electrodes based on reduced graphene oxide (rGO) and carbon nanotube (CNT) composites for ultra‐high power handling micro‐supercapacitor application is reported. The binder‐free microelectrodes were developed by combining electrostatic spray deposition (ESD) and photolithography lift‐off methods. Without typically used thermal or chemical reduction, GO sheets are readily reduced to rGO during the ESD deposition. Electrochemical measurements show that the in‐plane interdigital design of the microelectrodes is effective in increasing accessibility of electrolyte ions in‐between stacked rGO sheets through an electro‐activation process. Addition of CNTs results in reduced restacking of rGO sheets and improved energy and power density. Cyclic voltammetry (CV) measurements show that the specific capacitance of the micro‐supercapacitor based on rGO–CNT composites is 6.1 mF cm?2 at 0.01 V s?1. At a very high scan rate of 50 V s?1, a specific capacitance of 2.8 mF cm?2 (stack capacitance of 3.1 F cm?3) is recorded, which is an unprecedented performance for supercapacitors. The addition of CNT, electrolyte‐accessible and binder‐free microelectrodes, as well as an interdigitated in‐plane design result in a high‐frequency response of the micro‐supercapacitors with resistive‐capacitive time constants as low as 4.8 ms. These characteristics suggest that interdigitated rGO–CNT composite electrodes are promising for on‐chip energy storage application with high power demands.  相似文献   

13.
Nickel oxide (NiO) nanoparticles are distributed uniformly in the vertically aligned carbon nanotube arrays (VACNTs) with millimeter thickness by an effective supercritical carbon dioxide‐assisted method. The as‐prepared VACNT/NiO hybrid structures are used as electrodes without binders and conducting additives for supercapacitor applications. Due to the synergetic effects of NiO and VACNTs with nanoporous structures and parallel 1D conductive paths for electrons, the supercapacitors exhibit a high capacitance of 1088.44 F g?1. Furthermore, an asymmetric supercapacitor is assembled using the as‐synthesized VACNTs/NiO hybrids as the positive electrode and the VACNTs as the negative electrode. Remarkably, the energy density of the asymmetric supercapacitor is as high as 90.9 Wh kg?1 at 3.2 kW kg?1 and the maximum power density reaches 25.6 kW kg?1 at 24.9 Wh kg?1, which are superior to those of the NiO or VACNTs‐based asymmetric supercapacitors. More importantly, the asymmetric supercapacitors exhibit capacitance retention of 87.1% after 2000 cycles at 5 A g?1. The work provides a novel approach in decorating highly dense and long VACNTs with active materials, which are promising electrodes for supercapacitors with ultrahigh power density and energy density.  相似文献   

14.
In this work, Ni0.85Se nanosheets array electrode material was prepared with carbon fiber cloth (CFC) as a substrate. Owing to their special structure, the Ni0.85Se nanosheets array exhibits an outstanding energy storage property with a superior specific capacitance (820 F/g) and great rate capability (83.17%). Moreover, the Ni0.85Se electrode presents an great cycling performance with 82.63% retention after 10,000 cycles. The asymmetric supercapacitor (ASC) was fabricated based on Ni0.85Se positive and activated carbon (AC) negative electrode materials, with KOH/PVA gel as the electrolyte, respectively. A highest energy density of 29 W h kg?1 was achieved at a power density of 779 W kg?1 under the optimal potential range of 1.6 V. Furthermore, the Ni0.85Se//AC ASC devices demonstrate a great cycling performance of 81.25% capacitance retention after 5000 charge–discharge cycles. These excellent performance provide strong evidence to confirm the conclusion that Ni0.85Se nanosheets array used as electrode materials in supercapacitors and Ni0.85Se//AC asymmetric supercapacitors hold significant potential in the field of energy storage.  相似文献   

15.
For building high‐energy density asymmetric supercapacitors, developing anode materials with large specific capacitance remains a great challenge. Although Fe2O3 has been considered as a promising anode material for asymmetric supercapacitors, the specific capacitance of the Fe2O3‐based anodes is still low and cannot match that of cathodes in the full cells. In this work, a composite material with well dispersed Fe2O3 quantum dots (QDs, ≈2 nm) decorated on functionalized graphene‐sheets (FGS) is prepared by a facile and scalable method. The Fe2O3 QDs/FGS composites exhibit a large specific capacitance up to 347 F g?1 in 1 m Na2SO4 between –1 and 0 V versus Ag/AgCl. An asymmetric supercapacitor operating at 2 V is fabricated using Fe2O3/FGS as anode and MnO2/FGS as cathode in 1 m Na2SO4 aqueous electrolyte. The Fe2O3/FGS//MnO2/FGS asymmetric supercapacitor shows a high energy density of 50.7 Wh kg?1 at a power density of 100 W kg?1 as well as excellent cycling stability and power capability. The facile synthesis method and superior supercapacitive performance of the Fe2O3 QDs/FGS composites make them promising as anode materials for high‐performance asymmetric supercapacitors.  相似文献   

16.
Flexible fibrous supercapacitors (FFS) are considered the next-generation wearable energy storage devices because they provide reliable safety, eco-friendliness, and high power density. In particular, the FFS is desirable for application to wearable electronics because it can overcome disadvantages of the lithium-ion battery (LIB), such as the hazard of explosion and the complex manufacturing process. Nevertheless, the practical application of the FFS continues to be inhibited by the poor energy storage performance due to the limited specific surface area, poor electrical properties, and low wettability of the carbon fiber electrode. Herein, for the first time, the surface engineering of an FFS using nitrogen and fluorine codoped mesoporous carbon fibers (FFS-NFMCF) is described, and the synergistic effect of porosity tuning and heteroatom codoping upon the electrochemical performance is demonstrated. The resultant supercapacitor shows a high specific capacitance of 243.9 mF cm−2 at a current density of 10.0 µA cm−2 and good ultrafast cycling stability with capacitance retention of 91.3% for up to 10 000 cycles at a current density of 250.0 µA cm−2. More interestingly, the FFS-NFMCF exhibits good mechanical properties and remarkable safety in practical application, thus demonstrating its feasibility for use in wearable electronic textiles.  相似文献   

17.
The development of flexible electrodes with high mass loading and efficient electron/ion transport is of great significance but still remains the challenge of innovating suitable electrode structures for high energy density application. Herein, for the first time, lignosulfonate-derived N/S-co-doped graphene-like carbon is in situ formed within an interface engineered cellulose textile through a sacrificial template method. Both experimental and theoretical calculations disclose that the formed pomegranate-like structure with continuous conductive pathways and porous characteristics allows sufficient ion/electron transport throughout the entire structures. As a result, the obtained flexible electrode delivers a remarkable integrated capacitance of 6534 mF cm−2 (335.1 F g−1) and a superior stability at an industrially applicable mass loading of 19.5 mg cm−2. A pseudocapacitive cathode with ultrahigh capacitance of 7000 mF cm−2 can also be obtained based on the same electrode structure engineering. The as-assembled asymmetric supercapacitor achieves a high areal capacitance of 3625 mF cm−2, and a maximum energy density of 1.06 mWh cm−2, outperforms most of other reported high-loading supercapacitors. This synthesis method and structural engineering strategy can provide materials design concepts and a wide range of applications in the fields of energy storage beyond supercapacitors.  相似文献   

18.
The application of nontoxic 2D transition-metal carbides (MXenes) has recently gained ground in bioelectronics. In group-4 transition metals, tantalum possesses enhanced biological and physical properties compared to other MXene counterparts. However, the application of tantalum carbide for bioelectrodes has not yet been explored. Here, fluorine-free exfoliation and functionalization of tantalum carbide MAX-phase to synthesize a novel Ta4C3Tx MXene-tantalum oxide (TTO) hybrid structure through an innovative, facile, and inexpensive protocol is demonstrated. Additionally, the application of TTO composite as an efficient biocompatible material for supercapacitor electrodes is reported. The TTO electrode displays long-term stability over 10 000 cycles with capacitance retention of over 90% and volumetric capacitance of 447 F cm−3 (194 F g−1) at 1 mV s−1. Furthermore, TTO shows excellent biocompatibility with human-induced pluripotent stem cells-derived cardiomyocytes, neural progenitor cells, fibroblasts, and mesenchymal stem cells. More importantly, the electrochemical data show that TTO outperforms most of the previously reported biomaterials-based supercapacitors in terms of gravimetric/volumetric energy and power densities. Therefore, TTO hybrid structure may open a gateway as a bioelectrode material with high energy-storage performance for size-sensitive applications.  相似文献   

19.
Asymmetric supercapacitor with high energy density has been developed successfully using graphene/MnO2 composite as positive electrode and activated carbon nanofibers (ACN) as negative electrode in a neutral aqueous Na2SO4 electrolyte. Due to the high capacitances and excellent rate performances of graphene/MnO2 and ACN, as well as the synergistic effects of the two electrodes, such asymmetric cell exhibits superior electrochemical performances. An optimized asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.8 V, and exhibits maximum energy density of 51.1 Wh kg?1, which is much higher than that of MnO2//DWNT cell (29.1 Wh kg?1). Additionally, graphene/MnO2//ACN asymmetric supercapacitor exhibits excellent cycling durability, with 97% specific capacitance retained even after 1000 cycles. These encouraging results show great potential in developing energy storage devices with high energy and power densities for practical applications.  相似文献   

20.
Asymmetric supercapacitors have attracted tremendous attention in energy storage devices since they have an enhanced energy density in comparison with symmetric supercapacitor devices. Furthermore, the development of diverse and flexible electronic devices requires the asymmetric supercapacitor devices to be flexible and in various configurations. However, it is still a challenge to develop a universal strategy to obtain both capacitive and Faradic electrodes with various architectures. Herein, a spontaneously reducing/assembling strategy in an alkaline condition is developed to fabricate large‐area reduced graphene oxide (RGO) and RGO–metal oxide/hydroxide composite films or microsized structures. As a proof of concept, the large‐area pure RGO and RGO/Mn3O4 composite films with porous structure and superior mechanical property are achieved by such strategy. These RGO‐based films can directly serve as the anodes and cathodes of the flexible asymmetric film supercapacitors. Furthermore, the interdigital RGO and RGO/Mn3O4 patterns are also obtained via a selectively reducing/assembling process to achieve the asymmetric microsized supercapacitors. These asymmetric supercapacitors with different configurations possess good electrochemical performance and excellent flexibility. Therefore, such reducing and assembling strategy provides a route to achieve large‐area RGO‐based films and microsized structures for the applications in the various fields such as energy storage and photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号