首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective doping of a single conjugated polymer (CP) to obtain p-type and n-type conductive materials would be highly attractive for organic thermoelectric applications, because it will greatly reduce the time and costs of synthesizing different types of CPs. However, this strategy has rarely been investigated. In this study, two CPs are synthesized, designated PTQDPP-T and PTQDPP-2FT, based on a newly developed quinoidal unit with thienoisatin as the termini and a thiophene-flanked diketopyrrolopyrrole (ThDPP) unit as the quinoidal core. The electron-rich thiophene rings in thienoisatin and the electron delocalization induced by thienoisatin resulted in polymers with high-lying highest occupied molecular orbital, and the electron-deficient nature of ThDPP unit and its quinoidal backbone endowed the polymers with low-lying lowest unoccupied molecular orbitals. As a result, both polymers can be p-type and n-type doped. Because of its high mobility, doped PTQDPP-2FT performed better in organic thermoelectric devices than the doped PTQDPP-T. After being doped with FeCl3 and N-DMBI, PTQDPP-2FT showed p-type and n-type power factors of 278.2 and 2.37 µW m−1 K−2, respectively. These are the best for bipolar (p-type and n-type) performances that obtained by selective doping of a single polymer.  相似文献   

2.
Electron transporting (n-type) polymers are the coveted complementary counterpart to more thoroughly studied hole transporting (p-type) semiconducting polymers. Besides intrinsic stability issues of the doped form of n-type polymer toward ubiquitous oxidizing agents (H2O and O2), the choice of suitable n-dopants and underlying mechanism of doping is an open research field. Using a low LUMO, n-type unipolar acceptor1-acceptor2 copolymer poly(DPP-TPD) in conjunction with bulk n-doping using Cs2CO3 these issues can be addressed. A solid-state acid-base interaction between polymer and basic carbonate increases the backbone electron density by deprotonation of the thiophene comonomer while forming bicarbonate, as revealed by NMR and optical spectroscopy. Comparable to N-DMBI hydride/electron transfer, Cs2CO3 proton abstraction doping shifts the poly(DPP-TPD) work function toward the LUMO. Thereby, the anionic doped state is resilient against O2 but is susceptible toward H2O. Based on GIWAXS, Cs2CO3 is mostly incorporated into the amorphous regions of poly(DPP-TPD) with the help of hydrophilic side chains and has minor impact on the short-range order of the polymer. Cs2CO3 proton abstraction doping and the acceptor1-acceptor2 copolymer architecture creates a synergistic n-doped system with promising properties for thermoelectric energy conversion, as evidenced by a remarkable power factor of (5.59 ± 0.39) × µW m−1 K−2.  相似文献   

3.
In this work, a series of conjugated polymers based on diketopyrrolopyrrole (DPP) and dithienothiophene were designed for application in field-effect transistors (FETs). Owing to the synthetic nature of DPP units, the DPP polymers here contain different aromatic linkers with thiophene and methylthiophene, resulting in non-methylated and methylated DPP polymers. Methylated DPP polymers were found to show good crystalline properties and provide high hole mobilties up to 5.32 cm2 V−1 s−1 in FETs, while non-methylated polymer exhibits a hole mobility of 3.16 cm2 V−1 s−1. Especially, the polymer containing asymmetric linkers presents “face-on” orientation in thin films but provides the highest mobility. Our results reveal that the polymers incorporating methyl units as side chains can be used to realize high carrier mobility in FETs.  相似文献   

4.
Two donor–acceptor (D–A) polymers are obtained by coupling difluoro- and dichloro-substituted forms of the electron-deficient unit BDOPV and the relatively weak donor moiety dichlorodithienylethene (ClTVT). The conductivity and power factors of doped devices are different for the chlorinated and fluorinated BDOPV polymers. A high electron conductivity of 38.3 and 16.1 S cm−1 are obtained from the chlorinated and fluorinated polymers with N-DMBI, respectively, and 12.4 and 2.4 S cm−1 are obtained from the chlorinated and fluorinated polymers with CoCp2, respectively, from drop-cast devices. The corresponding power factors are 22.7, 7.6, 39.5, and 8.0  µ W m−1 K−2, respectively. Doping of PClClTVT with N-DMBI results in excellent air stability; the electron conductivity of devices with 50 mol% N-DMBI as dopant remained up to 4.9 S m−1 after 222 days in the air, the longest for an n-doped polymer stored in air, with a thermoelectric power factor of 9.3  µ W m−1 K−2. However, the conductivity of PFClTVT-based devices can hardly be measured after 103 days. These observations are consistent with morphologies determined by grazing incidence wide angle X-ray scattering and atomic force microscopy.  相似文献   

5.
The thermoelectric figure-of-merit (zT) of p-type MNiSn (M = Ti, Zr, or Hf) half-Heusler compounds is lower than their n-type counterparts due to the presence of a donor in-gap state caused by Ni occupying tetrahedral interstitials. While ZrNiSn and TiNiSn, have been extensively studied, HfNiSn remains unexplored. Herein, this study reports an improved thermoelectric property in p-type HfNi1−xCoxSn. By doping 5 at% Co at the Ni sites, the Seebeck coefficient becomes reaching a peak value exceeding 200 µV K−1 that breaks the record of previous reports. A maximum power factor of ≈2.2 mW m−1 K−2 at 973 K is achieved by optimizing the carrier concentration. The enhanced p-type transport is ascribed to the reduced content of Ni defects, supported by first principle calculations and diffraction pattern refinement. Concomitantly, Co doping also softens the lattice and scatters phonons, resulting in a minimum lattice thermal conductivity of ≈1.8 W m−1 K−1. This leads to a peak zT of 0.55 at 973 K is realized, surpassing the best performing p-type MNiSn by 100%. This approach offers a new method to manipulate the intrinsic atomic disorder in half-Heusler materials, facilitating further optimization of their electronic and thermal properties.  相似文献   

6.
A unique strain-mediated lattice rotation strategy is introduced via nanocompositing to upsurge the optimized limits in the composition-to-structural pathway on rationally engineering the efficient thermoelectric material. In this study, a special lattice rotation via strain engineering is realized to optimize the desired electronic and chemical environment for enhancing thermoelectric properties in n-type Bi2S2Se. This approach results in a unique transport phenomenon to assist high-energy electrons in transferring through the optimized transport channels, and appropriate structure disparity to significantly localize phonons. As a result, Sb over Cl doping in Bi2S2Se gently reduces Eg and introduces defect states in bandgap with shifting down the Fermi level, thus causing increase in carrier concentration, which contributes to a higher power factor of ≈7.18 µW cm−1 K−2 (at T = 773 K). Besides, a lower thermal conductivity of ≈0.49 W m−1 K−1 is driven through lattice strain and defect engineering. Consequently, an ultra-high ZTmax = 1.13 (at T = 773 K) and a high ZTave = 0.54 (323 K-773 K) are realized. This study not only leads to an extraordinary thermoelectric performance but also reveals a unique paradigm for electron transportation and phonon localization via lattice strain engineering.  相似文献   

7.
Nine diketopyrrolopyrrole (DPP)-based conjugated polymers (CPs), that is, poly(diketopyrrolopyrrole-alt-terchalcogenophene)s, via combinations of furanyl-(FDPP), thienyl-(TDPP), selenophenyl-DPP (SeDPP) and furan, thiophene, selenophene comonomers, are synthesized to explore the chalcogen effect on the solubility, film morphology/microstructure, and charge transport property of the resultant polymers. All polymers except for SeDPP-Se are soluble in non-chlorinated solvents such as o-xylene and tetralin. Flanking of DPP with furan in FDPP-F, FDPP-T, and FDPP-Se enables even good solubility in green solvent anisole. TDPP-Se exhibits the highest reliable hole mobility over 10 cm2 V−1 s−1 in organic thin film transistors (OTFTs) bar-coated from o-xylene/tetralin (20/80 v/v) solution. With anisole as the processing solvent, FDPP-F-based bar-coated OTFTs displays a reliable hole mobility up to 3.50 cm2 V−1 s−1. This is the first report on green solvent processed OTFTs with mobility above 1 cm2 V−1 s−1. Charge transport property of all the polymers is correlated with the film morphology and microstructure that are noticeably influenced by the type and position of chalcogenophenes. The current work sheds light on the design of high mobility CPs processable with green solvents.  相似文献   

8.
A rational implementation and optimization of thermally activated delayed fluorescent (TADF) dendrimer emitters in light-emitting electrochemical cells (LECs) sets in the Dendri-LEC family. They feature outstanding stabilities (90/1050 h for green/yellow devices) that are comparable to the best green/yellow Ir(III)-complexes (450/500 h) and conjugated polymers (33/5500 h), while offering benefits of low-cost synthesis and easy upscaling. In particular, a fundamental molecular design that capitalizes on exchanging peripheral substituents (tert-butyl vs methoxy) to tune photophysical, electrochemical, morphological, and ion conductivity features in thin films is rationalized by temperature-dependent steady-state and time-resolved emission spectroscopy, cyclic voltammetry, atomic force microscopy, and electrochemical impedance spectroscopy techniques. Herein, a TADF mechanism associated to a reduced photoluminescence quantum yield, but an enhanced electrochemical stability and ion conductivity enables to clarify the reduced device efficiency and brightness (4.0 lm W−1@110 cd m−2 vs 3.2 lm W−1@55 cd m−2) and increased stability (90 vs 1050 h) upon using methoxy groups. What is more, this substitution enables an excellent compatibility with biogenic electrolytes keeping device performances (1.9 lm W−1@35 cd m−2 and 1300 h), while graphene-devices achieve on par figures to traditional indium–tin oxide-devices. Overall, this work establishes the bright future of dendrimer emitters toward highly stable and truly sustainable lighting sources.  相似文献   

9.
Filled skutterudites are prospective intermediate temperature materials for␣thermoelectric power generation. CoSb3-based n-type filled skutterudites have good electrical transport properties with power factor values over 40 μW/cm K2 at elevated temperatures. Filling multiple fillers into the crystallographic voids of skutterudites would help scatter a broad range of lattice phonons, thus resulting in lower lattice thermal conductivity values. We report the thermoelectric properties of n-type multiple-filled skutterudites between 5 K and 800 K. The combination of different fillers inside the voids of the skutterudite structure shows enhanced phonon scattering, and consequently a strong suppression of the lattice thermal conductivity. Very good power factor values are achieved in multiple-filled skutterudite compared with single-element-filled materials. The dimensionless thermoelectric figure of merit for n-type filled skutterudites is improved through multiple-filling in a wide temperature range.  相似文献   

10.
Although orthorhombic GeSe is predicted to have an ultrahigh figure of merit, ZT ≈ 2.5, up to now, the highest experimental value is ≈0.2 due to the low carrier concentration (nH ≈ 1018 cm−3). Improving symmetry is an effective approach for enhancing the ZT of GeSe-based materials. With Te-alloying, Ge4Se3Te displays the two-dimensional hexagonal structure and high nH ≈ 1.23 × 1021 cm−3. Interestingly, Ge4Se3Te transformed from the hexagonal into the rhombohedral phase with only ≈2% I–V–VI2-alloying (I = Li, Na, K, Cu, Ag; V = Sb, Bi; VI = Se, Te). According to the calculated results of Ge0.82Ag0.09Bi0.09Se0.614Te0.386 single-crystal grown via AgBiTe2-alloying, it exhibits a higher valley degeneracy than the hexagonal Ge4Se3Te. For instance, AgBiTe2-alloying induces a strong band convergence and band inversion effect, resulting in a significantly enhanced Seebeck coefficient and power factor with a similar nH from 17 µV K−1 and 0.63 µW cm−1 K−2 for pristine Ge4Se3Te to 124 µV K−1 and 5.97 µW cm−1 K−2 for 12%AgBiTe2-alloyed sample, respectively. Moreover, the sharply reduced phonon velocity, nano-domain wall structure, and strong anharmonicity lead to low lattice thermal conductivity. As a result, a record-high average ZT ≈0.95 over 323–773 K with an excellent ZT ≈ 1.30 is achieved at 723 K.  相似文献   

11.
Direct arylation polymerization (DAP) is emerging as a promising green, cheap, simple, and efficient environment friendly method for synthesizing conjugated polymers without involving any organometallic reagent. We report fluorene based novel cross-conjugated alternate and random copolymers for polymer solar cells (PSCs), which were synthesized by DAP and/or Yamamoto polymerization under appropriate reaction conditions to obtain high molecular weight. These cross-conjugated polymers possess absorption maxima in the range of 490–520 nm and have narrow band gap (1.7–2.05 eV) which is suitable for bulk heterojuntion (BHJ) type organic solar cells. Among the synthesized polymers, the highest number average molecular weight (Mn) i.e. 43.1 kg mol−1 was obtained for polymer P2b (poly((9H-fluoren-9-ylidene)methylene)bis((2-ethylhexyl)sulfane)-alt-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)), and so good polymeric films were formed for P2b. Thus, BHJ films were prepared for P2b for device performance studies and the morphology of these films was studied by atomic force microscopy (AFM). Polymer P2b was blended with the fullerene derivative [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) in different ratios and under the illumination of solar simulator with Air Mass global (AM 1.5G) irradiated at 100 mW cm−2. Power conversion efficiency (PCE) of 1.4% has been achieved for BHJs in ratio of 1:2 of P2b: PC71BM in simply processed devices. This result indicates that cross-conjugated polymers can be tapped as potential donors for BHJs as the PCE obtained is the highest among this type of cross-conjugated polymers.  相似文献   

12.
2D tin-based perovskites have gained considerable attention for use in diverse optoelectronic applications, such as solar cells, lasers, and thin-film transistors (TFTs), owing to their good stability and optoelectronic properties. However, their intrinsic charge-transport properties are limited, and the insulating bulky organic ligands hinder the achievement of high-mobility electronics. Blending 3D counterparts into 2D perovskites to form 2D/3D hybrid structures is a synergistic approach that combine the high mobility and stability of 3D and 2D perovskites, respectively. In this study, reliable p-channel 2D/3D tin-based hybrid perovskite TFTs comprising 3D formamidinium tin iodide (FASnI3) and 2D fluorinated 4-fluoro-phenethylammonium tin iodide ((4-FPEA)2SnI4) are reported. The optimized FPEA-incorporated TFTs show a high hole mobility of 12 cm2 V−1 s−1, an on/off current ratio of over 108, and a subthreshold swing of 0.09 V dec−1 with negligible hysteresis. This excellent p-type characteristic is compatible with n-type metal-oxide TFT for constructing complementary electronics. Two procedures of antisolvent engineering and device patterning are further proposed to address the key concern of low-performance reproducibility of perovskite TFTs. This study provides an alternative A-cation engineering method for achieving high-performance and reliable tin-halide perovskite electronics.  相似文献   

13.
Ladder-like aromatic diketones (LADK), which possess a coplanar π-extended geometry, a high electron deficiency as well as various attractive optoelectronic properties, are demonstrated as the promising candidates in building small-molecule organic electron-transporting materials, yet reports on direct integration of these structural motifs into n-type polymers are rarely accessed. Herein, it is demonstrated that a possibility of realizing unipolar n-type characteristics of such acceptor system by developing two novel donor–acceptor type polymers, in which the newly developed LADK unit, named as 3,8-bis(2-decyltetradecyl)-5,10-difluoro-s-indaceno[1,2-b:5,6-b′]dithiophene-4,9-dione (FIDTO-R), is adopted as the acceptor segments. The resulting polymers present deep-lying unoccupied molecular orbital levels (as low as −3.84 eV), compact π–π stacking (d-spacing, ≈3.57 Å) coupled with uniform nanofiber-like surface morphology. All these factors contribute to excellent unipolar n-type characteristics with high electron mobilities of 0.27 and 1.01 cm2 V−1 s−1, together with high inverter gain values of 141 and 80, respectively. The recorded values are among the best in n-type polymer field-effect transistors and associated inverter circuits. These findings unambiguously reveal that the as-prepared FIDTO-R and its analog LADK derivatives are another type of excellent building blocks for the construction of high-mobility n-type polymers.  相似文献   

14.
Calcium cobaltite Ca3Co4−xO9+δ (CCO) is a promising p-type thermoelectric (TE) material for high-temperature applications in air. The grains of the material exhibit strong anisotropic properties, making texturing and nanostructuring mostly favored to improve thermoelectric performance. On the one hand multitude of interfaces are needed within the bulk material to create reflecting surfaces that can lower the thermal conductivity. On the other hand, low residual porosity is needed to improve the contact between grains and raise the electrical conductivity. In this study, CCO fibers with 100% flat cross sections in a stacked, compact form are electrospun. Then the grains within the nanoribbons in the plane of the fibers are grown. Finally, the nanoribbons are electrospun into a textured ceramic that features simultaneously a high electrical conductivity of 177 S cm−1 and an immensely enhanced Seebeck coefficient of 200 µV K−1 at 1073 K are assembled. The power factor of 4.68 µW cm−1 K−2 at 1073 K in air surpasses all previous CCO TE performances of nanofiber ceramics by a factor of two. Given the relatively high power factor combined with low thermal conductivity, a relatively large figure-of-merit of 0.3 at 873 K in the air for the textured nanoribbon ceramic is obtained.  相似文献   

15.
Property modulation of 2,5-dioctylpyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (DPPD)-based high energy converting wide band gap polymers, P(BDT-TDPPDT) and P(BDTT-TDPPDT), was studied via the incorporation of an additional DPPD unit on their repeating units. A new electron acceptor (BDPPD) unit containing two DPPD units was prepared and copolymerized with the distannyl derivatives of benzodithiophene (BDT) or 2D-conjugated benzodithiophene (BDTT) to provide two new polymers, P(BDT-BDPPD) and P(BDTT-BDPPD). The optical band gaps and highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels of P(BDT-BDPPD) and P(BDTT-BDPPD) were 2.16 eV, 2.08 eV and −5.37 eV/‒3.21 eV, −5.44 eV/‒3.36 eV, respectively. The hole mobilities of P(BDT-BDPPD) and P(BDTT-BDPPD) were in the order of 10−4 cm2V−1 s−1. The polymer solar cells (PSCs) prepared with the configuration of ITO/PEDOT:PSS/P(BDT-BDPPD) or P(BDTT-BDPPD):PC70BM/Al gave maximum power conversion efficiencies (PCEs) of 2.74% and 3.63%, respectively. The insertion of a BDPPD unit instead of a TDPPDT unit on the DPPD-based polymer backbone did not affect the optical and electrochemical properties considerably. On the other hand, the new polymers, P(BDT-BDPPD) and P(BDTT-BDPPD), resulted in improved photovoltaic performances compared to the reported polymers, P(BDT-TDPPDT) and P(BDTT-TDPPDT), for the devices prepared without additives.  相似文献   

16.
The fabrication procedure for silicon carbide power metal oxide semiconductor field-effect transistors can be improved through simultaneous formation (i.e., using the same contact materials and a one-step annealing process) of ohmic contacts on both the n-source and p-well regions. We have succeeded in the simultaneous formation of Ni/Al ohmic contacts to n- and p-type SiC after annealing at 1000°C for 5 min in an ultrahigh vacuum. Ohmic contacts to n-type SiC were found when the Al-layer thickness was less than about 6 nm, while ohmic contacts to p-type SiC were observed for an Al-layer thickness greater than about 5 nm. Only the contacts with an Al-layer thickness in the range of 5 nm to 6 nm exhibited ohmic behavior to both n- and p-type SiC, with a specific contact resistance of 1.8 × 10−4 Ω cm2 and 1.2 × 10−2 Ω cm2 for n- and p-type SiC, respectively. An about 100-nm-thick contact layer was uniformly formed on the SiC substrate, and polycrystalline δ-Ni2Si(Al) grains were formed at the contact/SiC interface. In the samples that exhibited ohmic behavior to both n- and p-type SiC, the distribution of the Al/Ni ratios in the δ-Ni2Si(Al) grains was larger than that observed for any of the samples that showed ohmic behavior to either n- or p-type SiC. Furthermore, the grain size of the δ-Ni2Si(Al) grains in the samples showing ohmic behavior to both n- and p-type SiC was smaller than the grains in any of the samples that showed ohmic behavior to either n- or p-type SiC. Thus, the large distribution in the Al/Ni ratios and a fine microstructure were found to be characteristic of the ohmic contacts to both n- and p-type SiC. Grains with a low Al concentration correspond to ohmic contacts to n-type SiC, while grains with a high Al concentration correspond to ohmic contacts to p-type SiC.  相似文献   

17.
Hexa-peri-hexabenzocoronene (HBC) is a disc-shaped conjugated molecule with strong π-π stacking property, high intrinsic charge mobility and good self-assembly property. But for a long time, the organic photovoltaic (OPV) solar cells based on HBC small organic molecules demonstrated low power conversion efficiencies (PCEs). In this study, a series of polymers named as PHBCDPPC20, PHBCDPPC8, PHBCDPPF and PHBCDPPDT were designed and synthesized through copolymerization of HBC with bulky mesityl substituents and strong electron-withdrawing diketopyrrolopyrrole (DPP) with different alkyl side chains and various π-bridges. Introduction of DPP unit into the HBC derivatives broadened the absorption spectra and lowered the band gaps. Bulky mesityl substituents attached to periphery of HBC prevented polymers from self-aggregating into too large domain size in the blend films of photovoltaic devices. The different π-bridges have significant effect on the structure conformation of the polymers. The polymer PHBCDPPDT with bithiophene π-bridges demonstrated the broadest absorption for its extensive π-conjugation and more coplanar conformation compared with the thiophene π-bridge one. PHBCDPPC20, PHBCDPPC8, PHBCDPPF and PHBCDPPDT gave field-effect hole mobilities of 1.35 × 10−3, 2.31 × 10−4, 2.79 × 10−4 and 8.60 × 10−3 cm2 V−1 s−1, respectively. The solar cells based on these polymers displayed PCEs of 2.12%, 2.85%, 1.89% and 2.74%. To our knowledge, 2.85% is the highest PCE for the HBC-based photovoltaic materials till now.  相似文献   

18.
The development of environmentally benign thermoelectric materials with high energy conversion efficiency (ZT) continues to be a long-standing challenge. So far, high ZT has been achieved using heavy elements to reduce lattice thermal conductivity (κlat). However, it is not preferred to use such elements because of their environmental load and high material cost. Here a new approach utilizing hydride anion (H) substitution to oxide ion is proposed for ZT enhancement in thermoelectric oxide SrTiO3 bulk polycrystals. Light element H substitution largely reduces κlat from 8.2 W/(mK) of SrTiO3 to 3.5 W/(mK) for SrTiO3−xHx with x = 0.216. The mass difference effect on phonon scattering is small in the SrTiO3−xHx, while local structure distortion arising from the distributed Ti−(O,H) bond lengths strongly enhances phonon scattering. The polycrystalline SrTiO3−xHx shows high electronic conductivity comparable to La-doped SrTiO3 single crystal because the H substitution does not form a grain boundary potential barrier and thus suppresses electron scattering. As a consequence, SrTiO3−xHx bulk exhibits maximum ZT = 0.11 at room temperature and the ZT value increases continuously up to 0.22 at T = 657 K. The H substitution idea offers a new approach for ZT enhancement in thermoelectric materials without utilizing heavy elements.  相似文献   

19.
Thermoelectric (TE) energy conversion in conjugated polymers is considered a promising approach for low-energy harvesting and self-powered temperature sensing. To enhance the TE performance, it is necessary to understand the relationship between the Seebeck coefficient (α) and electrical conductivity (σ). Typical doped polymers exhibit α–σ relationship that is distinct from that of inorganic materials due to their large structural and energetic disorder, which prevents them from achieving the maximum TE power factor (PF = α2σ). Here, an ideal α–σ relationship in the Kang–Snyder model following a transport parameter s  = 1 is demonstrated with two degenerately doped semi-crystalline polymers, poly[(4,4′-(bis(hexyldecylsulfanyl)methylene)cyclopenta[2,1-b:3,4-b′]dithiophene)-alt-(benzo[c][1,2,5]thiadiazole)] (PCPDTSBT) and poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) using a sequential doping method. The results allow the realization of the PFs reaching theoretic maxima (i.e., 112.01  µ W m−1 K−2 for PPDT2FBT and 49.80  µ W m−1 K−2 for PCPDTSBT) and close to metallic behavior in heavily doped films. Additionally, it is shown that the PF maxima appear when the doping state switches from non-degenerate to degenerate. Strategies towards an optimal α–σ relationship enable optimization of the PF and provide an understanding of the charge transport of doped polymers.  相似文献   

20.
We investigated the properties of indium-doped zinc oxide layers grown by metalorganic chemical vapor deposition on semi-insulating GaN(0001) templates. Specular and transparent films were grown with n-type carrier concentrations up to 1.82 × 1019 cm−3 as determined by Hall measurements, and all In-doped films had carrier concentrations significantly higher than that of a comparable undoped film. For low In flows, the carrier concentration increased accordingly with trimethyl-indium (TMIn) flow until a maximum carrier concentration of 1.82 × 1019 cm−3 was realized. For higher In flows, the carrier concentration decreased with increasing TMIn flow rate. Sheet resistance as low as 185 Ω/sq was achieved for the In-doped films, which is a significant decrease from that of a comparable undoped ZnO film. Our n-type doping studies show that In is an effective dopant for controlling the n-type conductivity of ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号