首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The development of high-performance (K,Na)NbO3 (KNN)-based lead-free piezoceramics for next-generation electronic devices is crucial for achieving environmentally sustainable society. However, despite recent improvements in piezoelectric coefficients, correlating their properties to underlying multiscale structures remains a key issue for high-performance KNN-based ceramics with complex phase boundaries. Here, this study proposes a medium-entropy strategy to design “local polymorphic distortion” in conjunction with the construction of uniformly oversize grains in the newly developed KNN solid-solution, resulting in a novel large-size hierarchical domain architecture (≈0.7 µm wide). Such a structure not only facilitates polarization rotation but also ensures a large residual polarization, which significantly improves the piezoelectricity (≈3.2 times) and obtains a giant energy harvesting performance (Wout = 2.44 mW, PD = 35.32 µW mm−3, outperforming most lead-free piezoceramics). This study confirms the coexistence of multiphase through the atomic-resolution polarization features and analyzes the domain/phase transition mechanisms using in situ electric field structural characterizations, revealing that the electric field induces highly effective multiscale polarization configuration transitions based on T–O–R sequential phase transitions. This study demonstrates a new strategy for designing high-performance piezoceramics and facilitates the development of lead-free piezoceramic materials in energy harvesting applications.  相似文献   

2.
It is well known that the piezoelectric performance of ferroelectric Pb(Zr,Ti)O3 (PZT) based ceramics is far inferior to that of ferroelectric single crystals due to ceramics' polycrystalline nature. Herein, it is reported that piezoelectric stress coefficient e33 = 39.24 C m?2 (induced electric displacement under applied strain) in the relaxor piezoelectric ceramic 0.55Pb(Ni1/3Nb2/3)O3–0.135PbZrO3–0.315PbTiO3 (PNN‐PZT) prepared by the solid state reaction method exhibits the highest value among various reported ferroelectric ceramic and single crystal materials. In addition, its piezoelectric coefficient d33* = 1753 pm V?1 is also comparable with that of the commercial Pb(Mg1/3Nb2/3)O3‐PbTiO3 (PMN‐PT) piezoelectric single crystal. The PNN‐PZT ceramic is then assembled into a cymbal energy harvester. Notably, its maximum output current at the acceleration of 3.5 g is 2.5 mApp, which is four times of the PMN‐PT single crystal due to the large piezoelectric e33 constants; while the maximum output power is 14.0 mW, which is almost the same as the PMN‐PT single crystal harvester. The theoretical analysis on force‐induced power output is also presented, which indicates PNN‐PZT ceramic has great potential for energy device application.  相似文献   

3.
压电材料作为环境振动能量收集器的核心功能材料,是制备高性能能量收集器的关键。该文从提高能量收集效率入手,研究适合于能量转换的高性能压电陶瓷材料。采用两步合成工艺制备出了0.7Pb(Zr0.51Ti0.49)0.99O3-0.3Pb(Zn1/3Nb2/3)O3(PZT-PZN)压电陶瓷,研究了La2O3掺杂对其微观结构和机电性能的影响。实验结果表明,掺杂少量的La2O3能显著提高PZT-PZN陶瓷的压电系数(d33)、机电耦合系数(k31、kp)、介电常数(εr)等。当掺杂量为4%(摩尔分数)时,在1 200℃烧结PZT-PZN,显示出良好的压电和介电性能:d33=560pC/N,k31=0.376,kp=0.642,s1E1=16.5×10-12 m2/N,εr=3 125。  相似文献   

4.
2D piezoelectric materials have strong intrinsic piezoelectricity and superior flexibility, which are endowed with huge potential to develop piezoelectric nanogenerators (PENGs). However, there are few attempts to investigate the energy harvesting of 2D ferroelectric materials. Herein, an enhanced output performance is reported by ferroelectric polarization in a PENG with exfoliated 2D ferroelectric CuInP2S6 (CIPS). Specifically, the polarized CIPS-based PENG produces a short-circuit current of 760 pA at 0.85% tensile strain, which is 3.8 times higher than that of unpolarized CIPS-based PENG. Systematical PFM and Raman analysis reveal that the ferroelectric polarization remarkably reinforces the effective piezoelectric constant of CIPS nanoflakes and boosts the in-plane migration and out-of-plane hopping of copper ions, which is the main reason for the enhancement of output performance. Furthermore, the CIPS-based PENG can not only be utilized to harvest biomechanical energy such as wrist joints movement, but also exhibits a potential for a voice recognition system integrated with deep learning technology. The classification accuracy of a series of letter sounds is as high as 96%. This study commendably broadens the application scope of 2D materials in micro-nano energy and intelligent sensors, which will have profound implications for exploring wearable nanoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号