首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Triboelectric nanogenerators (TENGs) represent an emerging technology in energy harvesting, medical treatment, and information technology. Flexible, portable, and self-powered electronic devices based on TENGs are much desired, whereas the complex preparation processes and high cost of traditional flexible electrodes hinder their practical applications. Here, an MXene/polyvinyl alcohol (PVA) hydrogel TENG (MH-TENG) is presented with simple fabrication, high output performance, and versatile applications. The doping of MXene nanosheets promotes the crosslinking of the PVA hydrogel and improves the stretchability of the composite hydrogel. The MXene nanosheets also form microchannels on surfaces, which not only enhances the conductivity of the hydrogel by improving the transport of ions but also generates an extra triboelectric output via a streaming vibration potential mechanism. The measured open-circuit voltage of the MH-TENG reaches up to 230 V even in a single-electrode mode. The MH-TENG can be stretched up to 200% of the original length and demonstrates a monotonical increasing relationship between the stretchable length and the short-circuit voltage. By utilizing the MH-TENG's outstanding stretchable property and ultrahigh sensitivity to mechanical stimuli, applications in wearable movement monitoring, high-precision written stroke recognition, and low-frequency mechanical energy harvesting are demonstrated.  相似文献   

2.
    
Breathable, flexible, and highly sensitive pressure sensors have drawn increasing attention due to their potential in wearable electronics for body-motion monitoring, human-machine interfaces, etc. However, current pressure sensors are usually assembled with polymer substrates or encapsulation layers, thus causing discomfort during wearing (i.e., low air/vapor permeability, mechanical mismatch) and restricting their applications. A breathable and flexible pressure sensor is reported with nonwoven fabrics as both the electrode (printed with MXene interdigitated electrode) and sensing (coated with MXene/silver nanowires) layers via a scalable screen-printing approach. Benefiting from the multi-layered porous structure, the sensor demonstrates good air permeability with high sensitivity (770.86–1434.89 kPa−1), a wide sensing range (0–100 kPa), fast response/recovery time (70/81 ms), and low detection limit (≈1 Pa). Particularly, this sensor can detect full-scale human motion (i.e., small-scale pulse beating and large-scale walking/running) with high sensitivity, excellent cycling stability, and puncture resistance. Additionally, the sensing layer of the pressure sensor also displays superior sensitivity to humidity changes, which is verified by successfully monitoring human breathing and spoken words while wearing a sensor-embedded mask. Given the outstanding features, this breathable sensor shows promise in the wearable electronic field for body health monitoring, sports activity detection, and disease diagnosis.  相似文献   

3.
    
The integration of triboelectric nanogenerators (TENGs) and 2D nanomaterials brings about 2D-nanomaterial-based TENGs (2D-TENGs) that promote the rapid development of self-powered sensing systems and wearable electronics. Extraordinary physical, electronic, chemical, and optical properties of 2D nanomaterials endow 2D-TENGs with improved output performance. This review presents the state of the art of 2D-TENGs with respect to basic classifications, enhancement mechanisms, special advantages, output performances, and applications in energy harvesting and self-powered sensing. Furthermore, several challenges that can impede applications of 2D-TENGs are discussed.  相似文献   

4.
    
The utilization of unmanned aerial vehicles (UAVs) is on the rise across various industries. In such a scenario, the issue of flight safety for these UAVs becomes increasingly paramount. Currently, UAVs exhibit shortcomings in flight attitude perception compared to more mature manned aircraft, especially concerning the position sensing of flight actuation, which poses significant safety risks. Mature position monitoring solutions for flight actuation used in manned aircraft cannot be directly integrated into systems of UAV due to compatibility issues. This necessitates the development of new position sensing technologies to address this challenge. Triboelectric nanogenerators, with their advantages of miniaturization, self-powering capabilities, and the ability to generate voltage-level electrical signals, are chosen to form a part of the position detection system for sensors in UAVs. In this study, a self-powered displacement sensor is developed that utilizes frictional charge separation signals. This sensor is specifically designed to monitor the position status of the flight actuators in UAV. With a compact volume of <11.1 cm3 and a weight of <9.5 g, this sensor is lightweight efficient and adaptable for practical applications.  相似文献   

5.
    
Self-healing ionic conductive hydrogels have shown significant potential in applications like wearable electronics, soft robotics, and prosthetics because of their high strain sensitivity and mechanical and electrical recovery after damage. Despite the enormous interest in these materials, conventional fabrication techniques hamper their use in advanced devices since only limited geometries can be obtained, preventing proper conformability to the complexity of human or robotic bodies. Here, a photocurable hydrogel with excellent sensitivity to mechanical deformations based on a semi-interpenetrating polymeric network is reported, which holds remarkable mechanical properties (ultimate tensile strain of 550%) and spontaneous self-healing capabilities, with complete recovery of its strain sensitivity after damages. Furthermore, the developed material can be processed by digital light processing 3D printing technology to fabricate complex-shaped strain sensors, increasing mechanical stress sensitivity with respect to simple sensor geometries, reaching an exceptional pressure detection limit below 1 Pa. Additionally, the hydrogel is used as an electrolyte in the fabrication of a laser-induced graphene-based supercapacitor, then incorporated into a 3D-printed sensor to create a self-powered, fully integrated device. These findings demonstrate that by using 3D printing, it is possible to produce multifunctional, self-powered sensors, appropriately shaped depending on the various applications, without the use of bulky batteries.  相似文献   

6.
    
This study investigates and proposes innovative approaches to achieve frequency selectivity within a limited space. Traditional multiresonant acoustic devices use individual sensing elements of varying sizes to achieve resonance frequency (fr), leading to an inability to sense focused acoustic waves, unlike the human ear. A miniaturized, self-powered artificial basilar membrane that incorporates multiresonant features is introduced. Multiple fr of the diaphragms are developed using inner boundary conditions (iBCs) defined by an adjustable micropatterned elastomeric support (µ-support) and a porous nanofiber (NF) mat. This new approach offers the advantage of all-in-one fabrication, eliminating the need for device area variation or an additional rigid frame typically required in conventional multiresonant acoustic devices. The efficacy of the iBCs in shifting fr within the vocal frequency ranges is verified via a laser Doppler vibrometer, simulation, and triboelectric output. With its self-powering capabilities based on triboelectric principles, this artificial basilar membrane holds promise for accurately recognizing musical and vocal signals with specific frequency characteristics. With four different iBCs in a total device area of 23 × 23 mm2, a tunable four-channel system with fr ranging from 400 to 3000 Hz is achieved. This advancement enables the sensing of focused acoustic waves, simulating the functionality of an artificial human ear model.  相似文献   

7.
    
Based on the triboelectrification and electrostatic induction coupling, triboelectric nanogenerators (TENGs) can convert mechanical energy into electrical energy, showing a promising potential in the fields of micro/nano energy and self-powered sensors applications. However, the devices are prone to malfunction due to fatigue and damage, limiting their development and applications. In this review, according to the working modes and operational malfunctions as well as the possible solutions, it is proposed that a robust TENG device can be constructed from three perspectives: self-healing friction layers, self-healing electrodes, and self-healing whole devices. Based on the structure, suitable environment, and self-healing materials, the design ideas and fabrication approaches of self-healing TENGs in recent years are summarized in detail. Finally, the development of self-healing TENGs in energy harvesting and self-powered sensors is outlined. It is the wish to provide insights and guidance for the application design of self-healing TENGs in the future.  相似文献   

8.
    
Flexible gas sensors play an indispensable role in diverse applications spanning from environmental monitoring to portable medical electronics. Full wearable gas monitoring system requires the collaborative support of high-performance sensors and miniaturized circuit module, whereas the realization of low power consumption and sustainable measurement is challenging. Here, a self-powered and reusable all-in-one NO2 sensor is proposed by structurally and functionally coupling the sensor to the battery, with ultrahigh sensitivity (1.92%/ppb), linearity (R2 = 0.999), ultralow theoretical detection limit (0.1 ppb), and humidity immunity. This can be attributed to the regulation of the gas reaction route at the molecular level. The addition of amphiphilic zinc trifluoromethanesulfonate (Zn(OTf)2) enables the H2O-poor inner Helmholtz layer to be constructed at the electrode–gel interface, thereby facilitating the direct charge transfer process of NO2 here. The device is then combined with a well-designed miniaturized low-power circuit module with signal conditioning, processing and wireless transmission functions, which can be used as wearable electronics to realize early and remote warning of gas leakage. This study demonstrates a promising way to design a self-powered, sustainable, and flexible gas sensor with high performance and its corresponding wireless sensing system, providing new insight into the all-in-one system of gas detection.  相似文献   

9.
    
The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.  相似文献   

10.
    
As an on-skin electronic device, artificial skin shows great potential in medical monitoring and personal electronics, which also holds promise to develop human-machine merging interfaces. However, merging artificial skins with human bodies is largely restricted by the dissimilarity of material compositions in existing artificial skins and biological tissues. Naturally conductive protein is a potential material candidate for artificial skins, nevertheless, it suffers from the critical issue of dehydration which harms its proton conductivity. Inspired by the sebum membrane of human skin, herein, a protein-based bioprotonic hydrogel (PBH) with reliable water retention ability is reported for artificial skins. The bovine serum albumin with natural proton conductivity is utilized in the PBH, and the glycerol that originally presents on human skin surface is used as an artificial sebum membrane to retain water. The PBH can act as a bioprotonic skin (B-skin) for collecting electrophysiological signals and self-powered sensing. Based on the B-skin, intelligent robot and cellphone control systems are demonstrated. Compared with present artificial skins, this B-skin is all made out of biological materials that are consistent with material components of human skin tissues including proteins, endogenous glycerol, and water. Such a B-skin may enable the development of next-generation human-machine merging interfaces.  相似文献   

11.
    
Electronic skin (E-skin) is an emerging and promising human-machine interface. Besides skin-like functions of tactile perception and stretchability, skin-like comfortabilities, including breathability, moisture permeability, softness, and thermoregulating ability are, also crucial factors for E-skins. Thermoregulation is one of the most important roles of human skin. People can feel comfortable when their skins are regulated at a certain range of temperature. Moreover, it is a dynamic process according to the surrounding temperature. Current E-skins do not have the function of dynamically regulating their temperature. Here, a thermoregulating E-skin (TE-skin) based on liquid metal as a phase change material with its melting point in the comfortable temperature range of human skin is reported. Compared with conventional E-skins, the TE-skin can dynamically termoregulate according to the surrounding temperature through a phase change. Combining with the principle of triboelectric nanogenerator, the TE-skin is also able to act as a self-powered sensor. Based on the self-powered TE-skin, an intelligent dialing communications system is further developed, which can be used to call a cellphone on human skin. For the first time, this study introduces the dynamic thermoregulating concept to E-skins and could open up new opportunities for E-skin developments.  相似文献   

12.
    
Multifunctional micro‐force sensing in one device is an urgent need for the higher integration of the smaller flexible electronic device toward wearable health‐monitoring equipment, intelligent robotics, and efficient human–machine interface. Herein, a novel microchannel‐confined MXene‐based flexible piezoresistive sensor is demonstrated to simultaneously achieve multi‐types micro‐force sensing of pressure, sound, and acceleration. Benefiting from the synergistically confined effect of the fingerprint‐microstructured channel and the accordion‐microstructured MXene materials, the as‐designed sensor remarkably endows a low detection limit of 9 Pa, a high sensitivity of 99.5 kPa?1, and a fast response time of 4 ms, as well as non‐attenuating durability over 10 000 cycles. Moreover, the fabricated sensor is multifunctionally capable of sensing sounds, micromotion, and acceleration in one device. Evidently, such a multifunctional sensing characteristic can highlight the bright prospect of the microchannel‐confined MXene‐based micro‐force sensor for the higher integration of flexible electronics.  相似文献   

13.
    
The rapid development of artificial intelligent and internet of things calls for high-performance multifunctional devices for synchronous detection of a wide variety of environmental signals, such as gas, light, and humidity. Herein, highly crystallized tin dioxide (SnO2) microwires (MWs) with low density of point defects are synthesized by the chemical vapor deposition method and constructed into a multifunctional device for photo and humidity sensing. The device shows excellent photoelectric performances, for example, ultralow dark current of ≈10−13 A, ultrahigh on–off ratio of >107, UV/visible rejection ratio of R300 nm/R400 nm > 107, specific detectivity (D*) of 1.16 × 1015 Jones, linear dynamic range (LDR) of 152 dB, high responsivity of 18 A W−1, and fast photoresponse speed of trise/tdecay = 2.7 µs/2.5 ms at 5 V bias. Furthermore, the p-CuI/n-SnO2 heterojunction shows outstanding self-powered properties, such as responsivity of 8.98 mA W−1, specific detectivity of 1.98 × 1012 Jones and LDR of 106 dB at 0 V bias. Additionally, the SnO2 MWs also show high sensitivity to ambient humidity changes. Therefore, the SnO2 MWs show high potential for multifunctional applications, such as UV photodetector and humidity sensor.  相似文献   

14.
    
2D Ti3C2Tx-MXenes have gained attention as highly promising materials owing to their distinctive characteristics. Even so, the limited ionic kinetics and active site exposure of these materials are hindered by the significant degradation caused by oxidation, as well as the challenges in ink formulation processability and nanosheet restacking. Here, this study presents a single-step and economical method to embellish cysteine onto titanium carbide (MX-C) nanosheets. Cysteine is found to facilitate the tuning of the interlayer spacing in MXene nanosheets. The idea is then applied in the development of micro-supercapacitors (MSCs) and the removal of toxic metal ions, specifically lead. In addition, the investigation reveals that MX-C exhibits antioxidant behavior and possesses excellent qualities as inks. The MX-C-printed MSC exhibits ultra-high areal capacitance (68 mF cm−2 (<N> = 5)) and power density (170.6 µW cm−2) compared to the reported printed MSC system. Similarly, the MX-C facilitates a high capacity for selectively adsorbing lead while also exhibiting excellent performance in terms of adsorption–desorption. The adsorption-induced effectiveness of cysteine is additionally validated by density functional theory simulations. The versatile approach emphasizes the potential of MX-C inks with antioxidation properties for the invention of MSCs and metal uptake for printable electronics and clean water applications, respectively.  相似文献   

15.
    
Multifunctional sensors that can simultaneously detect light and thermal stimuli play an essential role in the research of portable devices and complex arrays of electronics. Lots of effort has been made to realize the simultaneous detection of light and temperature in a standalone device. However, since there is a strong interference of electric signals, accurate simultaneous sensing remains a challenge. Here, a self-powered dual-parameter sensor based on thermo-phototronic effect in Nb-doped SrTiO3 (NSTO) single crystal to achieve decoupled light and temperature sensing is developed. High light- and temperature-sensing sensitivities of 0.201 µA mW cm−2 and 16.77 µA K−1 are realized, respectively. The excellent simultaneous sensing capability may be attributed to effective light-to-electrical and thermal-to-electrical energy conversion in the NSTO crystal. The excellent simultaneous sensing performance of the dual-parameter sensors, together with their ease of fabrication, pushes forward the development of highly sensitive multifunctional sensors.  相似文献   

16.
    
Flexible tactile sensors are garnering substantial interest for various promising applications, including artificial intelligence, prosthetics, healthcare monitoring, and human–machine interactions (HMI). However, it still remains a critical challenge in developing high-resolution tactile sensors without involving high-cost and complicated manufacturing processes. Herein, a flexible high-resolution triboelectric sensing array (TSA) for self-powered real-time tactile sensing is developed through a facile, mask-free, high-efficient, and environmentally friendly laser direct writing technique. A 16 × 16 pixelated TSA with a resolution of 8 dpi based on patterned laser-induced graphene (LIG) electrodes (7 Ω sq−1) is fabricated by the complementary intersection overlapping between upper and lower aligned semicircular electrode arrays. With the especially patterning design, the complexity of TSA and the number of data channels is reduced. Meanwhile, the TSA platform exhibits excellent durability and synchronicity and enables the achievement of real-time visualization of multipoint touch, sliding, and tracking motion trajectory without power consumption. Furthermore, a smart wireless controlled HMI system, composed of a 9-digital arrayed touch panel based on a LIG-patterned triboelectric nanogenerator, is constructed to control personal electronics wirelessly. Consequently, the self-powered TSA as a promising platform demonstrates great potential for an active real-time tactile sensing system, wireless controlled HMI, security identification and, many others.  相似文献   

17.
在智能时代,传感器是智能设备的核心器件之一,是信息系统的源头。经过长久以来的发展,传统的有源化传感器已经能对环境中各种信号进行检测,但需循环充电、电池更换等问题,却极大限制了它的应用范围。近年来,随着社会和科技的发展进步,可以自身产生电信号、响应环境刺激、无源化的自供电传感器逐渐兴起。本文综述了近期国内外关于柔性自供电传感器的研究进展,介绍了三种主流的自供电传感器的供电原理、常用材料和应用领域。并对柔性自供电传感器亟待解决的问题及未来发展方向进行了总结和展望。  相似文献   

18.
    
The advent of self-powered wearable electronics will revolutionize the fields of smart healthcare and sports monitoring. This technological advancement necessitates more stringent design requirements for triboelectric materials. The triboelectric aerogels must enhance their mechanical properties to address the issue of structural collapse in real-world applications. This study fabricates stiff nanocellulosic triboelectric aerogels with multiscale structures induced by the Hofmeister effect. The aggregation and crystallization of polymer molecular chains are enhanced by the Hofmeister effect, while ice crystal growth imparts a porous structure to the aerogel at the micron scale. Therefore, the triboelectric aerogel exhibits exceptional stiffness, boasting a Young's modulus of up to 142.9 MPa and a specific modulus of up to 340.6 kN m kg–1, while remaining undeformed even after supporting 6600 times its weight. Even after withstanding an impact of 343 kPa, highly robust wearable self-powered sensors fabricated with triboelectric aerogels remain operational. Additionally, the self-powered sensor is capable of accurately detecting human movements, particularly in abnormal fall postures detection. This study provides considerable research and practical value for promoting material design and broadening application scenarios for self-powered wearable electronics.  相似文献   

19.
    
Development of highly sensitive pressure sensors that function well even in bending environments and operate at ultralow voltage is desirable for wearable applications. Here, a highly sensitive and bendable capacitive pressure sensor with the ability to distinguish pressure and bending stimuli and a pressure‐sensitive transistor (PST) that can be easily integrated into wearable sensor system due to ultralow voltage (as low as 1 V for stable signal detection) operation is demonstrated. By introducing surface treatment and bonding technique, all components of the pressure sensor are tightly bonded to each other, enabling high bending stability. The sensor shows high pressure sensitivity (9.9 kPa−1) and can detect pressure even in the bending state. Additional bending sensors enables to separately detect signals from the actual pressure and bending deformation. In order to implement low‐power sensor circuitry, the PST is fabricated by integrating the pressure sensor and inkjet‐printing single‐walled carbon nanotube thin film transistor. Such low‐voltage operation of the PST enables to demonstrate the stand‐alone wearable user‐interactive pulse monitoring system by using commercially available electronic devices. The strategy for bendable low‐power sensor may enable realization of wearable sensing system and electronic skins with low power consumption in near future.  相似文献   

20.
    
Flexible tribovoltaic direct-current (DC) generators are urgently expected by wearable applications. Traditional rigid contact-separation type tribovoltaic DC generators normally have non-ignorable friction loss and cannot sustain outstanding outputs. This hinders their serviceability in continuous motion scenarios. Here, flexible liquid-based DC generators (FLGs) with metal-liquid-semiconductor indium gallium zinc oxide (IGZO) stack structures are reported. The FLG with Pt/H2O/IGZO structure delivers a peak short-circuit current density up to 2.3 µA cm−2, a peak open-circuit voltage up to 620 mV, and a power density up to 0.1 µW cm−2. The differences in the properties of different liquid–solid interfaces are studied by density functional theory, showing that the bond formation, charge-transfer-induced dipole electric field at the solid-liquid interface, and the built-in electric field are responsible for the generation and separation of electron-hole pairs to form continuous DC. The proposed FLG can keep excellent performance even after >5 × 104 shaking cycles or exposing to ambient conditions for 30 days, showing extraordinary stability. Besides charging capacitors or driving LEDs, the FLG is further demonstrated to work for self-powered multifunctional sensing, enabling pressure, position-posture, or temperature detections. This design offers potential solutions and novel possibilities for next-generation self-powered wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号