首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the van der Waals (vdW) surfaces are usually chemically inert, un-destructive, scalable, and reversible redox reactions are introduced on the vdW surfaces of 2D anisotropic semiconductors ReX2 (X = S or Se) facilitated by simple photochemistry. Ultraviolet (UV) light (with humid) and laser exposure can reversibly oxidize and reduce rhenium disulfide (ReS2) and rhenium diselenide (ReSe2), respectively, yielding a pronounced doping effect with good control. Evidenced by Raman spectroscopy, dynamic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, the grafting and removal of covalently functionalized oxygen groups on the perfect vdW surfaces are confirmed. The optical and electrical properties can be thereby reversibly tunable in wide ranges. Such optical direct-writing and rewritable capability via solvent/contaminant-free approach for chemical doping are compelling in the coming era of 2D materials.  相似文献   

2.
Control of the carrier type in 2D materials is critical for realizing complementary logic computation. Carrier type control in WSe2 field‐effect transistors (FETs) is presented via thickness engineering and solid‐state oxide doping, which are compatible with state‐of‐the‐art integrated circuit (IC) processing. It is found that the carrier type of WSe2 FETs evolves with its thickness, namely, p‐type (<4 nm), ambipolar (≈6 nm), and n‐type (>15 nm). This layer‐dependent carrier type can be understood as a result of drastic change of the band edge of WSe2 as a function of the thickness and their band offsets to the metal contacts. The strong carrier type tuning by solid‐state oxide doping is also demonstrated, in which ambipolar characteristics of WSe2 FETs are converted into pure p‐type, and the field‐effect hole mobility is enhanced by two orders of magnitude. The studies not only provide IC‐compatible processing method to control the carrier type in 2D semiconductor, but also enable to build functional devices, such as, a tunable diode formed with an asymmetrical‐thick WSe2 flake for fast photodetectors.  相似文献   

3.
Scalable substitutional doping of 2D transition metal dichalcogenides is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line and back-end-of-line compatible temperatures of 800 and 400 °C, respectively, is reported. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, this study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.  相似文献   

4.
5.
Doping is a fundamental requirement for tuning and improving the properties of conventional semiconductors. Recent doping studies including niobium (Nb) doping of molybdenum disulfide (MoS2) and tungsten (W) doping of molybdenum diselenide (MoSe2) have suggested that substitutional doping may provide an efficient route to tune the doping type and suppress deep trap levels of 2D materials. To date, the impact of the doping on the structural, electronic, and photonic properties of in situ‐doped monolayers remains unanswered due to challenges including strong film substrate charge transfer, and difficulty achieving doping concentrations greater than 0.3 at%. Here, in situ rhenium (Re) doping of synthetic monolayer MoS2 with ≈1 at% Re is demonstrated. To limit substrate film charge transfer, r‐plane sapphire is used. Electronic measurements demonstrate that 1 at% Re doping achieves nearly degenerate n‐type doping, which agrees with density functional theory calculations. Moreover, low‐temperature photoluminescence indicates a significant quench of the defect‐bound emission when Re is introduced, which is attributed to the Mo O bond and sulfur vacancies passivation and reduction in gap states due to the presence of Re. The work presented here demonstrates that Re doping of MoS2 is a promising route toward electronic and photonic engineering of 2D materials.  相似文献   

6.
Molecular doping is a powerful, tuneable, and versatile method to modify the electronic properties of 2D transition metal dichalcogenides (TMDCs). While electron transfer is an isotropic process, dipole‐induced doping is a collective phenomenon in which the orientation of the molecular dipoles interfaced to the 2D material is key to modulate and boost this electronic effect, despite it is not yet demonstrated. A novel method toward the molecular functionalization of monolayer MoS2 relying on the molecular self‐assembly of metal phthalocyanine and the orientation‐controlled coordination chemistry of axial ligands is reported here. It is demonstrated that the subtle variation of position and type of functional groups exposed on the pyridinic ligand, yields a molecular dipole with programed magnitude and orientation which is capable to strongly influence the opto‐electronic properties of monolayer MoS2. In particular, experimental results revealed that both p‐ and n‐type doping can be achieved by modulating the charge carrier density up to 4.8 1012 cm?2. Density functional theory calculations showed that the doping mechanism is primarily resulting from the effect of dipole‐induced doping rather than charge transfer. The strategy to dope TMDCs is a highly modulable and robust, and it enables to enrich the functionality of 2D materials‐based devices for high‐performance applications in optoelectronics.  相似文献   

7.
The discovery of novel materials that possess extraordinary optical properties are of special interest, as they inspire systems for next‐generation solar energy harvesting and conversion devices. Learning from nature has inspired the development of many photonic nanomaterials with fascinating structural colors. 2D photonic nanostructures, inspired by the attractive optical properties found on the inner surfaces of seashells, are fabricated in a facile and scalable way. The shells generate shining clusters for preying on phototactic creatures through interaction with incident solar light in water. By alternately depositing graphene and 2D ultrathin TiO2 nanosheets to form 2D–2D heterostructures and homostructures, seashell‐inspired nanomaterials with well‐controlled parameters are successfully achieved. They exhibit exceptional interlayer charge transfer properties and ultrafast in‐plane electron mobility and present fascinating nacre‐mimicking optical properties and significantly enhanced light‐response behavior when acting as photoelectrodes. A window into the fabrication of novel 2D photonic structures and devices is opened, paving the way for the design of high‐performance solar‐energy harvesting and conversion devices.  相似文献   

8.
Two-dimensional (2D) photodetecting materials have shown superior performances over traditional materials (e.g., silicon, perylenes), which demonstrate low responsivity (R) ( < 1 AW−1), external quantum efficiency (EQE) ( < 100%), and limited detection bandwidth. Recently, 2D indium selenide (InSe) emerged as high-performance active material in field-effect transistors and photodetectors, whose fabrication required expensive and complex techniques. Here, it is shown for the first time how molecular functionalization with a common surfactant molecule (didodecyldimethylammonium bromide) (DDAB) represents a powerful strategy to boost the (opto)electronic performances of InSe yielding major performance enhancements in phototransistors, Schottky junctions, and van der Waals heterostructures via a lithography-compatible fabrication route. The functionalization can controllably dope and heal vacancies in InSe, resulting in ultrahigh field-effect mobility (103 cm2 V−1 s−1) and photoresponsivity (106 A W−1), breaking the record of non-graphene-contacted 2D photodetectors. The strategy towards the molecular doping of 2D photodetecting materials is efficient, practical, up-scalable, and operable with ultra-low power input, ultimately paving the way to next-generation 2D opto-electronics.  相似文献   

9.
10.
Acoustic devices play an increasingly important role in modern society for information technology and intelligent systems, and recently significant progress has been made in the development of communication, sensing, and energy transduction applications. However, conventional material systems, such as polymers, metals and silicon, show limitations to fulfill the evolving requirements for high-performance acoustic devices of small size, low power consumption, and multifunctional capabilities. 2D materials hold the promise in overcoming the development bottleneck of acoustic devices aforementioned, given their atomic-thin thickness, extensive surface area, superior physical properties, and remarkable layer-stacking tunability. By suspending the 2D materials, mechanical and thermal disruption from substrate will be eliminated, which will enable the development of new classes of acoustic devices with unprecedented sensitivity and accuracy. In this review, the recent progress of acoustic devices based on suspended 2D materials and their composites, especially applications in the audio frequency, static pressure, and ultrasonic frequency range, is briefly summarized, emphasizing the advantageous properties of suspended 2D materials and related outstanding device performance. Together with the development of 2D membrane synthesis, transfer, as well as microelectromechanical fabrication process, suspended 2D materials will shed light on the next-generation high-performance acoustic devices.  相似文献   

11.
Metal halide perovskite (MHP) semiconductors have driven a revolution in optoelectronic technologies over the last decade, in particular for high-efficiency photovoltaic applications. Low-dimensional MHPs presenting electronic confinement have promising additional prospects in light emission and quantum technologies. However, the optimisation of such applications requires a comprehensive understanding of the nature of charge carriers and their transport mechanisms. This study employs a combination of ultrafast optical and terahertz spectroscopy to investigate phonon energies, charge-carrier mobilities, and exciton formation in 2D (PEA)2PbI4 and (BA)2PbI4 (where PEA is phenylethylammonium and BA is butylammonium). Temperature-dependent measurements of free charge-carrier mobilities reveal band transport in these strongly confined semiconductors, with surprisingly high in-plane mobilities. Enhanced charge-phonon coupling is shown to reduce charge-carrier mobilities in (BA)2PbI4 with respect to (PEA)2PbI4. Exciton and free charge-carrier dynamics are disentangled by simultaneous monitoring of transient absorption and THz photoconductivity. A sustained free charge-carrier population is observed, surpassing the Saha equation predictions even at low temperature. These findings provide new insights into the temperature-dependent interplay of exciton and free-carrier populations in 2D MHPs. Furthermore, such sustained free charge-carrier population and high mobilities demonstrate the potential of these semiconductors for applications such as solar cells, transistors, and electrically driven light sources.  相似文献   

12.
2D carbon nanosheets are considered to be promising candidates for use as sodium ion battery (SIB) anodes due to their large specific surface area and excellent electronic conductivity. However, their applications are hampered by inferior cycling performance, insufficient storage capacity, and high cost. N, B co‐doping carbon nanosheets (NBTs) are synthesized using biomass‐based gelatin as carbon precursor and boric acid as template, and demonstrate their great potential as high‐performance SIB anodes in practical applications. The synergistic effect of heteroatom doping and ultrathin 2D structure provides the NBTs with abundant defects, active sites, and short ion/electron transfer distance, which favors and improves the storage capabilities and rate performances. The optimized NBTs present a remarkable cyclability and superb rate capability (309 mAh g?1 at 0.2 A g?1 for 200 cycles; 225 mAh g?1 at 1 A g?1 for 2000 cycles). Meanwhile, the Na storage mechanism is proved to be a pseudocapacitive‐controlled process, which accounts for the fast charge/discharge behaviors. This work demonstrates an effective template method to produce 2D heteroatoms co‐doping carbon nanosheets to achieve excellent Na storage performances.  相似文献   

13.
The emerging monoelemental 2D materials named as Xenes including borophene, silicene, germanene, stanene, phosphorene, arsenene, antimonene, bisthumene, selenene, and tellurene, have attracted rising attention experimentally and theoretically. Because of their excellent and versatile physical, chemical, electrical, and optical advantages, Xenes have been shown or have been predicted to have excellent performance in nanotechnology applications, addressing challenges and advances in electronics, energy, healthcare, and environment. In this review, the basic fundamentals in the classification of the periodic table group and the synthesis methods for the emerging materials are summarized. Then, the hybridization, doping and functionalization of 2D Xenes, and their corresponding applications are presented. Furthermore, a summary of research progress on 2D Xenes and the challenges and perspectives for their further development are discussed.  相似文献   

14.
Smart and multifunctional fiber reinforced polymer (FRP) composites with energy storage, sensing, and heating capabilities have gained significant interest for automotive, civil, and aerospace applications. However, achieving smart and multifunctional capabilities in an FRP composite while maintaining desired mechanical properties remains challenging. Here, a novel approach for layer-by-layer (LBL) deposition of 2D material (graphene and molybdenum disulfide, MoS2)-based heterostructure onto glass fiber fabric using a highly scalable manufacturing technique at a remarkable speed of ≈150 m min−1 is reported. This process enables the creation of smart textiles with integrated energy storage, sensing, and heating functionalities. This methodology combines gel-based electrolyte with a vacuum resin infusion technique, resulting in an efficient and stable smart FRP composite with an areal capacitance of up to ≈182 µF cm2 at 10 mV s−1. The composite exhibits exceptional cyclic stability, maintaining ≈90% capacitance after 1000 cycles. Moreover, the smart composite demonstrates joule heating, reaching from ≈24 to ≈27 °C within 120 s at 25 V. Additionally, the smart composite displays strain sensitivity by altering electrical resistance with longitudinal strain, enabling structural health monitoring. These findings highlight the potential of smart composites for multifunctional applications and provide an important step toward realizing their actual real-world applications.  相似文献   

15.
Device-to-Device(D2D)通信是下一代(5G)移动网络的重要组成部分。D2D设备间在不依赖基站的情况下直接进行数据传输,并通过重复使用蜂窝小区的频率资源从而提高移动通信系统的容量。为了激励蜂窝网络用户参与到D2D通信,运营商对D2D通信的定价是一个很关键的问题。文中首先介绍了D2D的基本概念及其四种主要类型,并就其中DR-OC型D2D通信定价提出了运营商和D2D设备的收益模型,然后仿真分析了网络中谱单价和奖励带宽对双方收益的影响。仿真结果显示运营商可以通过调整奖励带宽来协调双方收益以激励更多的用户参与到D2D通信。  相似文献   

16.
Metal-organic frameworks (MOFs) have been proposed as novel fillers for constructing polymer solid electrolytes based composite electrolytes. However, MOFs are generally used as passive fillers, in-depth revealing the binding mode between MOFs and polyethylene oxide (PEO), the critical role of MOFs in facilitating Li+ transport in solid electrolytes is full of challenges. Herein, inspired by density functional theory (DFT) the 2D-MOF with rich unsaturated metal coordination sites that can bind the O atom in PEO through the metal–oxygen bond,  anchor TFSI to release Li+, resulting in a remarkable Li+ transference number of 0.58, is reported according well with the experimental results and molecular dynamics (MD) simulation. Impressively, after the introduction of the 2D-MOF, the Li+ can rapidly hop along the benzene ring center within the 2D-MOF plane, and the interface between the benzene ring and PEO can also serve as a fast Li+ migration pathway, delivering multiple ion-transport channels, which present a high ion conductivity of 4.6 × 10−5 S cm−1 (25 °C). The lithium symmetric battery is stable for 1300 h at 60 °C, 0.1 mA cm−2. The assembled lithium metal solid state battery maintains high capacity of 162.8 mAh g−1 after 500 cycles at 60 °C and 0.5 C. This multiple ion-transport channels approach brings new ideas for designing advanced solid electrolytes.  相似文献   

17.
18.
Transition metal single-atom catalysts (SACs) are currently a hot area of research in the field of electrocatalytic oxygen reduction reaction (ORR). In this review, the recent advances in transition metal single-atom supported by 2D materials as catalysts for ORR with high performance are reported. Due to their large surface area, uniformly exposed lattice plane, and adjustable electronic state, 2D materials are ideal supporting materials for exploring ORR active sites and surface reactions. The rational design principles and synthetic strategies of transition metal SACs supported by 2D materials are systematically introduced while the identification of active sites, their possible catalytic mechanisms as well as the perspectives on the future of transition metal SACs supported by 2D materials for ORR applications are discussed. Finally, according to the current development trend of ORR catalysts, the future opportunities and challenges of transition metal SACs supported by 2D materials are summarized.  相似文献   

19.
A large number of two-dimensional (2D) monoelemental materials with huge application potentials have been developed, since graphene was reported as a monoelemental material with unique properties. As cousins of graphene, 2D group-V elemental monolayers have gained tremendous interest due to their electronic properties with significant fundamental bandgap. In this review, we extensively summarize the latest theoretical and experimental progress in group-V monoelemental materials, including the latest fabrication methods, the properties and potential applications of these 2D monoelementals. We also give a perspective of the challenges and opportunities of 2D monoelemental group-V monolayer materials and related functional nanodevices.  相似文献   

20.
2D semiconductor field-effect transistors (2D FETs) have emerged as a promising candidate for beyond-silicon electronics applications. However, its device performance has often been limited by the metal-2D semiconductor contact, and the non-negligible contact resistance (RSD) not only deteriorates the on-state current but also hinders the direct characterization of the intrinsic properties of 2D semiconductors (e.g., intrinsic charge carrier mobility, μint). Therefore, a proper extraction technique that can independently characterize the metal-2D semiconductor contact behavior and the intrinsic properties of a 2D semiconducting layer is highly desired. In this study, a universal yet simple method is developed to accurately extract the critical parameters in 2D FETs, including characteristic temperature (To), threshold voltage (VT), RSD, and μint. The practicability of this method is extensively explored by characterizing the temperature-dependent carrier transport behavior and the strain-induced band structure modification in 2D semiconductors. Technology computer aided design simulation is subsequently employed to verify the precision of RSD extraction. Furthermore, the universality of the proposed method is validated by successfully implementing the extraction to various 2D semiconductors, including black phosphorus, indium selenide, molybdenum disulfide, rhenium disulfide, and tungsten disulfide with top- and bottom-gated configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号