首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to calculate the heritability of feed efficiency and residual feed intake, and examine the relationships between feed efficiency and other traits of productive and economic importance. Intake and body measurement data were collected monthly on 970 cows in 11 tie-stall herds for 6 consecutive mo. Measures of efficiency for this study were: dry matter intake efficiency (DMIE), defined as 305-d fat-corrected milk (FCM)/305-d DMI, net energy for lactation efficiency (NELE), defined as 305-d FCM/05-d NEL intake, and crude protein efficiency (CPE), defined as 305-d true protein yield/305-d CP intake. Residual feed intake (RFI) was calculated by regressing daily DMI on daily milk, fat, and protein yields, body weight (BW), daily body condition score (BCS) gain or loss, the interaction between BW and BCS gain or loss, and days in milk (DIM). Data were analyzed with 3- and 4-trait animal models and included 305-d FCM or protein yield, DM, NEL, or CP intake, BW, BCS, BCS change between DIM 1 and 60, milk urea nitrogen, somatic cell score, RFI, or an alternative efficiency measure. Data were analyzed with and without significant covariates for BCS and BCS change between DIM 1 and 60. The average DMIE, NELE, and CPE were 1.61, 0.98, and 0.32, respectively. Heritability of gross feed efficiency was 0.14 for DMIE, 0.18 for NELE, and 0.21 for CPE, and heritability of RFI was 0.01. Body weight and BCS had high and negative correlations with the efficiency traits (−0.64 to −0.70), indicating that larger and fatter cows were less feed efficient than smaller and thinner cows. When BCS covariates were included in the model, cows identified as being highly efficient produced 2.3 kg/d less FCM in early lactation due to less early lactation loss of BCS. Results from this study suggest that selection for higher yield and lower BW will increase feed efficiency, and that body tissue mobilization should be considered.  相似文献   

2.
《Journal of dairy science》2022,105(7):5954-5971
Residual feed intake (RFI) and feed saved (FS) are important feed efficiency traits that have been increasingly considered in genetic improvement programs. Future sustainability of these genetic evaluations will depend upon greater flexibility to accommodate sparsely recorded dry matter intake (DMI) records on many more cows, especially from commercial environments. Recent multiple-trait random regression (MTRR) modeling developments have facilitated days in milk (DIM)-specific inferences on RFI and FS, particularly in modeling the effect of change in metabolic body weight (MBW). The MTRR analyses, using daily data on the core traits of DMI, MBW, and milk energy (MilkE), were conducted separately for 2,532 primiparous and 2,379 multiparous US Holstein cows from 50 to 200 DIM. Estimated MTRR variance components were used to derive genetic RFI and FS and DIM-specific genetic partial regressions of DMI on MBW, MilkE, and change in MBW. Estimated daily heritabilities of RFI and FS varied across lactation for both primiparous (0.05–0.07 and 0.11–0.17, respectively) and multiparous (0.03–0.13 and 0.10–0.17, respectively) cows. Genetic correlations of RFI across DIM varied (>0.05) widely compared with FS (>0.54) within either parity class. Heritability estimates based on average lactation-wise measures were substantially larger than daily heritabilities, ranging from 0.17 to 0.25 for RFI and from 0.35 to 0.41 for FS. The partial genetic regression coefficients of DMI on MBW (0.11 to 0.16 kg/kg0.75 for primiparous and 0.12 to 0.14 kg/kg0.75 for multiparous cows) and of DMI on MilkE (0.45 to 0.68 kg/Mcal for primiparous and 0.36 to 0.61 kg/Mcal for multiparous cows) also varied across lactation. In spite of the computational challenges encountered with MTRR, the model potentially facilitates an efficient strategy for harnessing more data involving a wide variety of data recording scenarios for genetic evaluations on feed efficiency.  相似文献   

3.
Extensive efforts have been made to identify more feed-efficient dairy cows, yet it is unclear how selection for feed efficiency will influence metabolic health. The objectives of this research were to determine the relationships between residual feed intake (RFI), a measure of feed efficiency, body condition score (BCS) change, and hyperketonemia (HYK) incidence. Blood and milk samples were collected twice weekly from cows 5 to 18 d postcalving for a total of 4 samples. Hyperketonemia was diagnosed at a blood β-hydroxybutyrate (BHB) ≥1.2 mmol/L and cows were treated upon diagnosis. Dry period, calving, and final blood sampling BCS was recorded. Prior mid-lactation production, body weight, body weight change, and dry matter intake (DMI) data were used to determine RFI phenotype, calculated as the difference between observed DMI and predicted DMI. The maximum BHB concentration (BHBmax) for each cow was used to group cows into HYK or not hyperketonemic. Lactation number, BCS, and RFI data were analyzed with linear and quadratic orthogonal contrasts. Of the 570 cows sampled, 19.7% were diagnosed with HYK. The first positive HYK test occurred at 9 ± 0.9 d postpartum and the average BHB concentration at the first positive HYK test was 1.53 ± 0.14 mmol/L. In the first 30 d postpartum, HYK-positive cows had increased milk yield and fat concentration, decreased milk protein concentration, and decreased somatic cell count. Cows with a dry BCS ≥4.0, or that lost 1 or more BCS unit across the transition to lactation period, had greater BHBmax than cows with lower BCS. Prior-lactation RFI did not alter BHBmax. Avoiding over conditioning of dry cows and subsequent excessive fat mobilization during the transition period may decrease HYK incidence; however, RFI during a prior lactation does not appear to be associated with HYK onset.  相似文献   

4.
The objective of this study was to identify genomic regions and candidate genes associated with feed efficiency in lactating Holstein cows. In total, 4,916 cows with actual or imputed genotypes for 60,671 single nucleotide polymorphisms having individual feed intake, milk yield, milk composition, and body weight records were used in this study. Cows were from research herds located in the United States, Canada, the Netherlands, and the United Kingdom. Feed efficiency, defined as residual feed intake (RFI), was calculated within location as the residual of the regression of dry matter intake (DMI) on milk energy (MilkE), metabolic body weight (MBW), change in body weight, and systematic effects. For RFI, DMI, MilkE, and MBW, bivariate analyses were performed considering each trait as a separate trait within parity group to estimate variance components and genetic correlations between them. Animal relationships were established using a genomic relationship matrix. Genome-wide association studies were performed separately by parity group for RFI, DMI, MilkE, and MBW using the Bayes B method with a prior assumption that 1% of single nucleotide polymorphisms have a nonzero effect. One-megabase windows with greatest percentage of the total genetic variation explained by the markers (TGVM) were identified, and adjacent windows with large proportion of the TGVM were combined and reanalyzed. Heritability estimates for RFI were 0.14 (±0.03; ±SE) in primiparous cows and 0.13 (±0.03) in multiparous cows. Genetic correlations between primiparous and multiparous cows were 0.76 for RFI, 0.78 for DMI, 0.92 for MBW, and 0.61 for MilkE. No single 1-Mb window explained a significant proportion of the TGVM for RFI; however, after combining windows, significance was met on Bos taurus autosome 27 in primiparous cows, and nearly reached on Bos taurus autosome 4 in multiparous cows. Among other genes, these regions contain β-3 adrenergic receptor and the physiological candidate gene, leptin, respectively. Between the 2 parity groups, 3 of the 10 windows with the largest effects on DMI neighbored windows affecting RFI, but were not in the top 10 regions for MilkE or MBW. This result suggests a genetic basis for feed intake that is unrelated to energy consumption required for milk production or expected maintenance as determined by MBW. In conclusion, feed efficiency measured as RFI is a polygenic trait exhibiting a dynamic genetic basis and genetic variation distinct from that underlying expected maintenance requirements and milk energy output.  相似文献   

5.
《Journal of dairy science》2022,105(11):8989-9000
The objective of this study was to compare 3-breed rotational crossbred (CB) cows of the Montbéliarde, Viking Red, and Holstein (HO) breeds with HO cows fed 2 alternative diets for dry matter intake (DMI), fat plus protein production (CFP), body weight (BW), body condition score (BCS), feed efficiency, and residual feed intake (RFI) from 46 to 150 days in milk (DIM) during first lactation. The CB cows (n = 17) and HO cows (n = 19) calved from September 2019 to March 2020. Cows were fed either a traditional total mixed ration diet (TRAD) or a higher fiber, lower starch total mixed ration diet (HFLS). The HFLS had 21% more corn silage, 47% more alfalfa hay, 44% less corn grain, and 43% less corn gluten feed than the TRAD. The 2 diets were analyzed for dry matter content, crude protein, forage digestibility, starch, and net energy for lactation. The BW and BCS were recorded once weekly. Daily milk, fat, and protein production were estimated from twice monthly milk recording with random regression. Measures of efficiency were CFP per kilogram of DMI and DMI per kilogram of BW. The RFI from 46 to 150 DIM was the residual error from regression of DMI on milk energy, metabolic BW, and the energy required for change in BW. Statistical analysis of all variables included the fixed effects of diet, breed group, and the interaction of diet and breed group. The CB cows fed HFLS had less DMI (?12%) and lower DMI/BW (?14%) compared with the HO cows fed TRAD. For CFP, CB and HO cows were not different when fed TRAD or HFLS. Furthermore, the CB cows fed HFLS had higher BW (+50 kg) compared with HO cows fed HFLS. The CB cows fed TRAD had higher BCS than HO cows fed TRAD and HO cows fed HFLS (+0.46 and +0.62, respectively). The HO cows fed TRAD had more DMI (+14%) and lower CFP per kilogram of DMI (?12%) compared with the HO cows fed HFLS. In addition, mean RFI from 46 to 150 DIM was lower and more desirable for CB cows fed HFLS (?120.0 kg) compared with HO cows fed TRAD (85.3 kg). Dairy producers may feed either TRAD or HFLS to CB cows without loss of CFP.  相似文献   

6.
The economic benefit of expanding the Australian Profit Ranking (APR) index to include residual feed intake (RFI) was evaluated using a multitrait selection index. This required the estimation of genetic parameters for RFI and genetic correlations using single nucleotide polymorphism data (genomic) correlations with other traits. Heritabilities of RFI, dry matter intake (DMI), and all the traits in the APR (milk, fat, and protein yields; somatic cell count; fertility; survival; milking speed; and temperament), and genomic correlations between these traits were estimated using a Bayesian framework, using data from 843 growing Holstein heifers with phenotypes for DMI and RFI, and bulls with records for the other traits. Heritability estimates of DMI and RFI were 0.44 and 0.33, respectively, and the genomic correlation between them was 0.03 and nonsignificant. The genomic correlations between the feed-efficiency traits and milk yield traits were also close to zero, ranging between −0.11 and 0.10. Positive genomic correlations were found for DMI with stature (0.16) and with overall type (0.14), suggesting that taller cows eat more as heifers. One issue was that the genomic correlation estimates for RFI with calving interval (ClvI) and with body condition score were both unfavorable (−0.13 and 0.71 respectively), suggesting an antagonism between feed efficiency and fertility. However, because of the relatively small numbers of animals in this study, a large 95% probability interval existed for the genomic correlation between RFI and ClvI (−0.66, 0.36). Given these parameters, and a genetic correlation between heifer and lactating cow RFI of 0.67, inclusion of RFI in the APR index would reduce RFI by 1.76 kg/cow per year. Including RFI in the APR would result in the national Australian Holstein herd consuming 1.73 × 106 kg less feed, which is worth 0.55 million Australian dollars (A$) per year and is 3% greater than is currently possible to achieve. Other traits contributing to profitability, such as milk production and fertility, will also improve through selection on this index; for example, ClvI would be reduced by 0.53d/cow per year, which is 96% of the gain for this trait that is achieved without RFI in the APR.  相似文献   

7.
Rotational 3-breed crossbred cows of Montbéliarde, Viking Red, and Holstein (CB) were compared with Holstein (HO) cows for alternative measures of feed efficiency as well as income over feed cost (IOFC) and residual feed intake (RFI) during the first 150 d of first, second, and third lactations. Primiparous and multiparous CB (n = 63 and n = 43, respectively) and HO (n = 60 and n = 37, respectively) cows were fed the same total mixed ration twice daily with refusals weighed once daily. Feed was analyzed for dry matter content, net energy for lactation, and crude protein content. Body weight (BW) was recorded twice weekly. Daily production of milk, fat, and protein were estimated from monthly test days with best prediction. Measures of efficiency from 4 to 150 d in milk (DIM) were feed conversion efficiency (FCE), defined as fat plus protein production (kg) per kilogram of dry matter intake (DMI); ECM/DMI, defined as kilograms of energy-corrected milk (ECM) per kilogram of DMI; net energy for lactation efficiency (NELE), defined as ECM (kg) per megacalorie of net energy for lactation intake; crude protein efficiency (CPE), defined as true protein production (kg) per kilogram of crude protein intake; and DMI/BW, defined as DMI (kg) per kilogram of BW. The IOFC was defined as revenue from fat plus protein production minus feed cost. The RFI from 4 to 150 DIM for each lactation was the residual error remaining from regression of DMI on milk energy output (Mcal), metabolic BW, and energy required for change in BW (Mcal). Statistical analysis of measures of feed efficiency and RFI for primiparous cows included the fixed effects of year of calving and breed group. For multiparous cows, statistical analysis included breed as a fixed effect and cow as a repeated effect nested within breed group. Primiparous CB cows had higher means for FCE (+5.5%), ECM/DMI (+4.0%), NELE (+4.0%), and CPE (+5.2%) and a lower mean DMI/BW (–5.3%) than primiparous HO cows. Primiparous CB cows ($875) also had higher mean IOFC than primiparous HO cows ($825). In addition, mean RFI from 4 to 150 DIM was significantly lower (more desirable) for primiparous CB cows than HO cows. Likewise, multiparous CB cows had higher means for FCE (+8.2%), ECM/DMI (+5.9%), NELE (+5.8%), and CPE (+8.1%) and a lower mean for DMI/BW (–4.8%) than multiparous HO cows. Multiparous CB cows ($1,296) also had a higher mean for IOFC than multiparous HO cows ($1,208) and a lower mean for RFI from 4 to 150 DIM than HO cows.  相似文献   

8.
Breeding values for dry matter intake (DMI) are important to optimize dairy cattle breeding goals for feed efficiency. However, generally, only small data sets are available for feed intake, due to the cost and difficulty of measuring DMI, which makes understanding the genetic associations between traits across lactation difficult, let alone the possibility for selection of breeding animals. However, estimating national breeding values through cheaper and more easily measured correlated traits, such as milk yield and liveweight (LW), could be a first step to predict DMI. Combining DMI data across historical nutritional experiments might help to expand the data sets. Therefore, the objective was to estimate genetic parameters for DMI, fat- and protein-corrected milk (FPCM) yield, and LW across the entire first lactation using a relatively large data set combining experimental data across the Netherlands. A total of 30,483 weekly records for DMI, 49,977 for FPCM yield, and 31,956 for LW were available from 2,283 Dutch Holstein-Friesian first-parity cows between 1990 and 2011. Heritabilities, covariance components, and genetic correlations were estimated using a multivariate random regression model. The model included an effect for year-season of calving, and polynomials for age of cow at calving and days in milk (DIM). The random effects were experimental treatment, year-month of measurement, and the additive genetic, permanent environmental, and residual term. Additive genetic and permanent environmental effects were modeled using a third-order orthogonal polynomial. Estimated heritabilities ranged from 0.21 to 0.40 for DMI, from 0.20 to 0.43 for FPCM yield, and from 0.25 to 0.48 for LW across DIM. Genetic correlations between DMI at different DIM were relatively low during early and late lactation, compared with mid lactation. The genetic correlations between DMI and FPCM yield varied across DIM. This correlation was negative (up to −0.5) between FPCM yield in early lactation and DMI across the entire lactation, but highly positive (above 0.8) when both traits were in mid lactation. The correlation between DMI and LW was 0.6 during early lactation, but decreased to 0.4 during mid lactation. The highest correlations between FPCM yield and LW (0.3–0.5) were estimated during mid lactation. However, the genetic correlations between DMI and either FPCM yield or LW were not symmetric across DIM, and differed depending on which trait was measured first. The results of our study are useful to understand the genetic relationship of DMI, FPCM yield, and LW on specific days across lactation.  相似文献   

9.
Previous research has shown that cows who receive treatment with nonsteroidal anti-inflammatory drugs after calving may have increased milk yield beginning near peak lactation, resulting in greater 305-d milk production. It has not been demonstrated whether this response is associated with greater feed intake following the first 3 wk of lactation. Dry matter intake (DMI) and milk yield were measured daily for 56 cows over the first 120 d in milk. Cows in their second parity and greater were blocked by parity and alternately enrolled 12 to 36 h after calving into 1 of 2 treatments: either 3 daily drenches of water or 3 daily drenches of a similar volume of water containing 125 g of sodium salicylate (SAL) beginning 12 to 36 h after calving. Cows were housed in individual stalls to monitor DMI. Blood samples were collected before calving and on the last day of treatment, as well as at 7, 11, 14, 18, 21, 35, 49, 63, 77, 91, 105, and 120 d in milk. The SAL treatment did not affect estimated 305-d milk, fat, or protein yields (from monthly test days), daily milk yield or components, energy-corrected milk, fat-corrected milk, or DMI; however, an interaction between parity and treatment was observed for DMI, where second-parity SAL cows had decreased intake with no differences observed in older cows. This resulted in a parity by treatment interaction for the ratio of energy-corrected milk to DMI. Similarly, no main effects of treatment were observed for plasma glucose, β-hydroxybutyrate (BHB), or fatty acid concentrations, but we noted interactions between treatment and parity for glucose, BHB, and insulin. Older cows had greater plasma glucose and insulin concentrations and decreased plasma BHB following SAL but no differences were observed in second parity animals. Alterations in glucose and insulin resulted in a tendency for a treatment by time interaction for the revised quantitative insulin sensitivity check index. Feeding behavior was also altered following SAL administration, resulting in fewer but longer meals, as well as a tendency for greater meal weight. A tendency for a treatment by week interaction for inter-meal interval was observed, as well as a parity by treatment interaction for meal weight. Despite the lack of a milk yield response, SAL had a prolonged programming effect on feeding behavior and blood variables over the first 120 DIM, with responses largely dependent on parity.  相似文献   

10.
A key goal for livestock science is to ensure that food production meets the needs of an increasing global population. Climate change may heighten this challenge through increases in mean temperatures and in the intensity, duration, and spatial distribution of extreme weather events, such as heat waves. Under high ambient temperatures, livestock are expected to decrease dry matter intake (DMI) to reduce their metabolic heat production. High yielding dairy cows require high DMI to support their levels of milk production, but this may increase susceptibility to heat stress. Here, we tested how feed intake and the rate of converting dry matter to milk (feed efficiency, FE) vary in response to natural fluctuations in weather conditions in a housed experimental herd of lactating Holstein Friesians in the United Kingdom. Cows belonged to 2 lines: those selected for high genetic merit for milk traits (select) and those at the UK average (control). We predicted that (1) feed intake and FE would vary with an index of temperature and humidity (THI), wind speed, and the number of hours of sunshine, and that (2) the effects of (1) would depend on the cows' genetic merit. Animals received a mixed ration, available ad libitum, from automatic feed measurement gates. Using >73,000 daily feed intake and FE records from 328 cows over 8 yr, we found that select cows produced more fat- and protein-corrected milk, and had higher DMI and FE than controls. Cows of both lines decreased DMI and fat- and protein-corrected milk but, importantly, increased FE as THI increased. This suggests that improvements in the efficiency of converting feed to milk may partially offset the costs of reduced milk yield owing to a warmer climate, at least under conditions of mild heat stress. The rate of increase in FE with THI was steeper in select cows than in controls, which raises the possibility that select cows use more effective coping tactics. This is, to our knowledge, the first longitudinal study on the effects of weather on FE. Understanding how weather influences feed intake and efficiency can help us to develop management and selection practices that optimize productivity under unfavorable weather conditions. This will be an important aspect of climate resilience in future.  相似文献   

11.
Current breeding tools aiming to improve feed efficiency use definitions based on total dry matter intake (DMI); for example, residual feed intake or feed saved. This research aimed to define alternative traits using existing data that differentiate between feed intake capacity and roughage or concentrate intake, and to investigate the phenotypic and genetic relationships among these traits. The data set contained 39,017 weekly milk yield, live weight, and DMI records of 3,164 cows. The 4 defined traits were as follows: (1) Feed intake capacity (FIC), defined as the difference between how much a cow ate and how much she was expected to eat based on diet satiety value and status of the cow (parity and lactation stage); (2) feed saved (FS), defined as the difference between the measured and the predicted DMI, based on the regression of DMI on milk components within experiment; (3) residual roughage intake (RRI), defined as the difference between the measured and the predicted roughage intake, based on the regression of roughage intake on milk components and concentrate intake within experiment; and (4) residual concentrate intake (RCI), defined as the difference between the measured and the predicted concentrate intake, based on the regression of concentrate intake on milk components and roughage intake within experiment. The phenotypic correlations were ?0.72 between FIC and FS, ?0.84 between FS and RRI, and ?0.53 between FS and RCI. Heritability of FIC, FS, RRI, and RCI were estimated to be 0.21, 0.12, 0.15, and 0.03, respectively. The genetic correlations were ?0.81 between FS and FIC, ?0.96 between FS and RRI, and ?0.25 between FS and RCI. Concentrate intake and RCI had low heritability. Genetic correlation between DMI and FIC was 0.98. Although the defined traits had moderate phenotypic correlations, the genetic correlations between DMI, FS, FIC, and RRI were above 0.79 (in absolute terms), suggesting that these traits are genetically similar. Therefore, selecting for FIC is expected to simply increase DMI and RRI, and there seems to be little advantage in separating concentrate and roughage intake in the genetic evaluation, because measured concentrate intake was determined by the feeding system in our data and not by the genetics of the cow.  相似文献   

12.
《Journal of dairy science》2019,102(7):6131-6143
Residual feed intake (RFI) is an estimate of animal feed efficiency, calculated as the difference between observed and expected feed intake. Expected intake typically is derived from a multiple regression model of dry matter intake on energy sinks, including maintenance and growth in growing animals, or maintenance, gain in body reserves, and milk production in lactating animals. The best period during the production cycle of a dairy cow to estimate RFI is not clear. Here, we characterized RFI in growing Holstein heifers (RFIGrowth; ∼10 to 14 mo of age; n = 226) and cows throughout a 305-d lactation (RFILac-Full; n = 118). The goals were to characterize relationships between RFI estimated at different production stages of the dairy cow; determine effects of selection for efficiency during growth on subsequent lactation and feed efficiency; and identify the most desirable testing scheme for RFILac-Full. For RFIGrowth, intake was predicted from multiple linear regression of metabolizable energy (ME) intake on mid-test body weight (BW)0.75 and average daily gain (ADG). For RFILac-Full, predicted intake was based on regression of BW0.75, ADG, and energy-corrected milk yield. Mean energy intake of the least and most efficient growing heifers (±0.5 standard deviations from mean RFIGrowth of 0) differed by 3.01 Mcal of ME/d, but the groups showed no difference in mid-test BW or ADG. Phenotypic correlation between RFIGrowth and RFI of heifers estimated in the first 100 d in milk (RFILac100DIM; n = 130) was 0.37. Ranking of these heifers as least (mean + 0.5 standard deviations), middle, or most efficient (mean – 0.5 standard deviations) based on RFIGrowth resulted in 43% maintaining the same ranking by RFILac100DIM. On average, the most efficient heifers ate 3.27 Mcal of ME/d less during the first 100 DIM than the least efficient heifers, but exhibited no differences in average energy-corrected milk yield, ADG, or BW. The correlation between RFILac100DIM and RFILac-Full was 0.72. Thus, RFIGrowth may serve as an indicator trait for RFI during lactation, and selection for heifers exhibiting low RFIGrowth should improve overall herd feed efficiency during lactation. Correlation analysis between RFILac-Full (10 to 305 DIM) and subperiod estimates of RFI during lactation indicated a test period of 64 to 70 d in duration occurring between 150 to 220 DIM provided a reliable approximation (r ≥ 0.90) of RFILac-Full among the test periods evaluated.  相似文献   

13.
《Journal of dairy science》2023,106(7):4650-4665
The objective of this study was to evaluate the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP) on milk production efficiency of Holstein cows naturally exposed to high temperature and humidity conditions. The study was conducted in 2 commercial farms in Mexico from July to October 2020 and included 1 wk covariate period, 3 wk adaptation, and 12 wk data collection. Cows [n = 1,843; ≥21 d in milk (DIM) and <100 d carried calf] were enrolled and assigned to the study pens (n = 10) balanced for parity, milk yield, and DIM. Pens were fed a total mixed ration diet either without (CTRL) or with SCFP (19 g/d, NutriTek, Diamond V). Milk yield, energy-corrected milk (ECM), milk components, linear somatic cell score, dry matter intake (DMI), feed efficiency (FE; Milk/DMI and ECM/DMI), body condition score, and the incidence of clinical mastitis, pneumonia, and culling were monitored. Statistical analyses included mixed linear and logistic models accounting for repeated measures (when applicable; multiple measurements per cow within treated pens) with pen as the experimental unit and treatment, time (week of study), parity (1 vs. 2+), and their interactions as fixed and pen nested within farm and treatment as random effect. Parity 2+ cows within pens fed SCFP produced more milk than cows within CTRL pens (42.1 vs. 41.2 kg/d); there were no production differences between groups of primiparous groups. Cows within SCFP pens had lower DMI (25.2 vs. 26.0 kg/d) and greater FE (1.59 vs. 1.53) and ECM FE (1.73 vs. 1.68) than cows within CTRL pens. Milk components, linear somatic cell score, health events, and culling were not different between groups. At the end of the study (245 ± 54 DIM), SCFP cows had greater body condition score than CTRL (3.33 vs. 3.23 in the first parity; 3.11 vs. 3.04 in 2+ parity cows). Feeding Saccharomyces cerevisiae fermentation products to lactating cows exposed to high temperature and humidity conditions improved FE.  相似文献   

14.
Residual feed intake (RFI) is a candidate trait for feed efficiency in dairy cattle. We investigated the influence of lactation stage on the effect of energy sinks in defining RFI and the genetic parameters for RFI across lactation stages for primiparous dairy cattle. Our analysis included 747 primiparous Holstein cows, each with recordings on dry matter intake (DMI), milk yield, milk composition, and body weight (BW) over 44 lactation weeks. For each individual cow, energy-corrected milk (ECM), metabolic BW (MBW), and change in BW (ΔBW) were calculated in each week of lactation and were taken as energy sinks when defining RFI. Two RFI models were considered in the analyses; RFI model [1] was a 1-step RFI model with constant partial regression coefficients of DMI on energy sinks (ECM, MBW, and ΔBW) over lactation. In RFI model [2], data from 44 lactation weeks were divided into 11 consecutive lactation periods of 4 wk in length. The RFI model [2] was identical to model [1] except that period-specific partial regressions of DMI on ECM, MBW, and ΔBW in each lactation period were allowed across lactation. We estimated genetic parameters for RFI across lactation by both models using a random regression method. Using RFI model [2], we estimated the period-specific effects of ECM, MBW, and ΔBW on DMI in all lactation periods. Based on results from RFI model [2], the partial regression coefficients of DMI on ECM, MBW, and ΔBW differed across lactation in RFI. Constant partial regression coefficients of DMI on energy sinks over lactation was not always sufficient to account for the effects across lactation and tended to give roughly average information from all period-specific effects. Heritability for RFI over 44 lactation weeks ranged from 0.10 to 0.29 in model [1] and from 0.10 to 0.23 in model [2]. Genetic variance and heritability estimates for RFI from model [2] tended to be slightly lower and more stable across lactation than those from model [1]. In both models, RFI was genetically different over lactation, especially between early and later lactation stages. Genetic correlation estimates for RFI between early and later lactation tended to be higher when using model [2] compared with model [1]. In conclusion, partial regression coefficients of DMI on energy sinks differed across lactation when modeling RFI. Neglect of lactation stage when defining RFI could affect the assessment of RFI and the estimation of genetic parameters for RFI across lactation.  相似文献   

15.
The objective of this field study was to evaluate the effect of supplemental feeding with glycerol or propylene glycol to dairy cows in early lactation on metabolic status, body condition and milk yield. In total, 673 newly calved cows from 12 commercial Swedish dairy herds were randomized to daily supplementation with 450 g of glycerol (GLY), 300 g of propylene glycol (PG), or nothing (control, CON). Supplements were fed twice daily from 0 to 21 d in milk (DIM) as a top dress on concentrates. For each cow, data on parity, breed, calving date, monthly test-day milk yield, and cases of diseases were collected. Blood samples were taken at approximately 2, 5, and 8 wk postpartum (pp) and analyzed for glucose, β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), and insulin. Samples taken within 3 wk pp were also analyzed for insulin-like growth factor 1 (IGF-1). Measurements of body condition score (BCS) and heart girth (HG) were obtained at approximately 2 and 5 wk pp and at time of first insemination. The effects of supplemental feeding with GLY or PG on the plasma concentrations of glucose, NEFA, BHBA, insulin, and IGF-1, and BCS, HG, and occurrence of disease were analyzed. No differences in BCS or HG or in plasma concentrations of glucose, BHBA, NEFA, or IGF-1 were found between the control group and any of the treatment groups. Cows in the GLY group had lower plasma insulin concentrations during DIM 0 to 63 compared with group CON, but no difference in insulin was found between the PG group and the CON group. Cows supplemented with GLY had a higher milk yield (kg of milk and kg of energy-corrected milk) during the first 90 DIM. Cows in the PG group tended to yield more milk during the same period. No differences in the occurrence of diseases were seen between the groups. In conclusion, supplementation with GLY in early lactation did increase milk yield without a subsequent decrease of metabolic status, and supplementation with PG tended to do the same.  相似文献   

16.
The aim of this study was to reduce voluntary dry matter intake (DMI) to increase feeding efficiency of preclassified inefficient (INE) dairy cows through restricted feeding. We studied the effects of dietary restriction on eating behavior, milk and energy-corrected milk (ECM) production, in vivo digestibility, energy balance, and measures of feed efficiency [residual feed intake (RFI) and ECM/DMI]. Before the experiment, 12 pairs of cows were classified as INE. The 2 dietary treatments consisted of ad libitum feeding versus restricted feeding of the same total mixed ration containing 36.5% roughage. Inefficient cows fed the restricted total mixed ration had a shorter eating time and lower meal and visit frequency, but a similar rate of eating, meal size, and meal duration compared with INE cows fed ad libitum. Compared with the INE cows fed ad libitum, restricted INE cows had 12.8% lower intake, their dry matter and neutral detergent fiber digestibility remained similar, and their ECM yield was 5.3% lower. Feed efficiency, measured as RFI, ECM/DMI, and net energy retained divided by digestible energy intake, was improved in the restricted INE cows as compared with the ad libitum cows. Our results show that moderate DMI restriction has the potential to improve feed efficiency of preclassified INE cows.  相似文献   

17.
The metabolic response of dairy cows undergoing an extended lactation to an insulin tolerance test (ITT) was investigated. Twelve multiparous Holstein-Friesian cows that calved in late winter in a pasture-based system were managed for a 670-d lactation by delaying rebreeding. Four 5-wk experimental periods commenced at approximately 73, 217, 422, and 520 d in milk (DIM). Cows were offered a diet of perennial ryegrass (73 and 422 DIM) or pasture hay and silage (217 and 520 DIM) supplemented with 1 kg dry matter (DM) of grain (control; CON) or 6 kg DM of grain (GRN). Daily energy intake was approximately 160 and 215 MJ of metabolizable energy/cow for CON and GRN, respectively. At all other times, cows were managed as a single herd and grazed pasture supplemented with grain to an estimated daily intake of 180 MJ of metabolizable energy/cow. Cows were fitted with a jugular catheter during the final week of each experimental period. An ITT using 0.12 IU of insulin/kg of body weight (BW) was conducted on each cow at approximately 100, 250, 460, and 560 DIM. Cows in the GRN treatment had greater milk yield, milk solids yield, and BW than cows in the CON treatment. Within treatment, individual cow responses to the ITT were highly variable. Plasma glucose and nonesterified fatty acid (NEFA) concentrations declined at all stages of lactation. The clearance rate of plasma glucose was slower before 300 DIM than after 300 DIM, which indicates greater inhibition of hepatic glucose synthesis and uptake of glucose by insulin-dependent tissues later in the lactation. The clearance rate, area under the curve, and recovery of plasma NEFA were greatest at 100 DIM, indicating greater responsiveness to the antilipolytic effect of insulin in early lactation, but also greater lipolytic responsiveness. The variation in response to the ITT was mostly a result of DIM rather than diet. However, the plasma NEFA response showed interactions between diet and DIM, indicating that energy intake may affect tissue responses to insulin. The responsiveness of peripheral tissues to insulin, primarily adipose tissue, changed throughout a 670-d lactation and contributed to a greater proportion of nutrients being partitioned to body reserves at the expense of milk yield as lactation progressed. Both stage of lactation and dietary intake have a role in the determination of whole-body and peripheral tissue responses to insulin; however, the exact mechanisms in control of this are unclear.  相似文献   

18.
《Journal of dairy science》2022,105(9):7564-7574
Residual feed intake (RFI) is commonly used to measure feed efficiency but individual intake recording systems are needed. Feeding behavior may be used as an indicator trait for feed efficiency using less expensive precision livestock farming technologies. Our goal was to estimate genetic parameters for feeding behavior and the genetic correlations with feed efficiency in Holstein cows. Data consisted of 75,877 daily feeding behavior records of 1,328 mid-lactation Holstein cows in 31 experiments conducted from 2009 to 2020 with an automated intake recording system. Feeding behavior traits included number of feeder visits per day, number of meals per day, duration of each feeder visit, duration of each meal, total duration of feeder visits, intake per visit, intake per meal [kg of dry matter (DM)], feeding rate per visit, and feeding rate per meal (kg of DM per min). The meal criterion was estimated as 26.4 min, which means that any pair of feeder visits separated by less than 26.4 min were considered part of the same meal. The statistical model included lactation and days in milk as fixed effects, and experiment-treatment, animal, and permanent environment as random effects. Genetic parameters for feeding behavior traits were estimated using daily records and weekly averages. Estimates of heritability for daily feeding behavior traits ranged from 0.09 ± 0.02 (number of meals; mean ± standard error) to 0.23 ± 0.03 (feeding rate per meal), with repeatability estimates ranging from 0.23 ± 0.01 (number of meals) to 0.52 ± 0.02 (number of feeder visits). Estimates of heritability for weekly averages of feeding behavior traits ranged from 0.19 ± 0.04 (number of meals) to 0.32 ± 0.04 (feeding rate per visit), with repeatability estimates ranging from 0.46 ± 0.02 (duration of each meal) to 0.62 ± 0.02 (feeding rate per visit and per meal). Most of the feeding behavior measures were strongly genetically correlated, showing that with more visits or meals per day, cows spend less time in each feeder visit or meal with lower intake per visit or meal. Weekly averages for feeding behavior traits were analyzed jointly with RFI and its components. Number of meals was genetically correlated with milk energy (0.48), metabolic body weight (?0.27), and RFI (0.19). Duration of each feeder visit and meal were genetically correlated with milk energy (0.43 and 0.44, respectively). Total duration of feeder visits per day was genetically correlated with DM intake (0.29), milk energy (0.62), metabolic body weight (?0.37), and RFI (0.20). Intake per visit and meal were genetically correlated with DM intake (0.63 and 0.87), milk energy (0.47 and 0.69), metabolic body weight (0.47 and 0.68), and RFI (0.31 and 0.65). Feeding rate was genetically correlated with DM intake (0.69), metabolic body weight (0.67), RFI (0.47), and milk energy (0.21). We conclude that measures of feeding behavior could be useful indicators of dairy cow feed efficiency, and individual cows that eat at a slower rate may be more feed efficient.  相似文献   

19.
Improving feed efficiency of dairy cows through breeding is expected to reduce enteric methane production per unit of milk produced. This study examined the effect of 2 forage-to-concentrate ratios on methane production, rumen fermentation, and nutrient digestibility in Holstein and Jersey dairy cows divergent in residual feed intake (RFI). Before experimental onset, RFI was estimated using a random regression model on phenotypic herd data. Ten lactating Holstein and 10 lactating Jersey cows were extracted from the herd and allocated to a high or low pre-experimental RFI group of 5 animals each within breed. Cows were fed ad libitum with total mixed rations either low (LC) or high (HC) in concentrates during 3 periods in a crossover design with a back-cross and staggered approach. Forage-to-concentrate ratio was 68:32 for LC and 39:61 for HC. Cows adapted to the diets in 12 to 24 d and feces were subsequently collected on 2 d. Afterward, gas exchange was measured in respiration chambers and rumen liquid was collected once after cows exited the chambers. Pre-experimental RFI was included in the statistical analysis as a class (low and high RFI) or continuous variable. Methane per kilogram of dry matter intake (DMI) was lower for Holsteins than Jerseys and the response to increased concentrate level was more pronounced for Holsteins than Jerseys (27.2 vs.13.8%); a similar pattern was found for the acetate:propionate ratio. However, methane production per kilogram of energy-corrected milk (ECM) was unaffected by breed. Further, total-tract digestibility of neutral detergent fiber was higher for Jerseys than Holsteins. For RFI as a class variable, DMI, methane production regardless of the expression, and digestibility were unaffected by RFI. For RFI as a continuous variable, DMI was lower and methane per kilogram of DMI was higher for cows with negative (efficient) than positive (inefficient) RFI values, and neutral detergent fiber digestibility was higher for Holsteins with negative than positive RFI values, but not for Jerseys. Daily methane production and methane per kilogram of ECM were unaffected by RFI. In conclusion, methane per kilogram of DMI of Jerseys was lowered to a smaller extent in response to the HC diet than of Holsteins. When pre-experimental RFI was used as a continuous variable, higher methane per kilogram of DMI was found for cows with negative RFI than positive RFI values, but not for methane per kilogram of ECM. These findings call for validation in larger studies.  相似文献   

20.
Dairy cow efficiency is increasingly important for future breeding decisions. The efficiency is determined mostly by dry matter intake (DMI). Reducing DMI seems to increase efficiency if milk yield remains the same, but resulting negative energy balance (EB) may cause health problems, especially in early lactation. Objectives of this study were to examine relationships between DMI and liability to diseases. Therefore, cow effects for DMI and EB were correlated with cow effects for 4 disease categories throughout lactation. Disease categories were mastitis, claw and leg diseases, metabolic diseases, and all diseases. In addition, this study presents relative percentages of diseased cows per days in milk (DIM), repeatability, and cow effect correlations for disease categories across DIM. A total of 1,370 German Holstein (GH) and 287 Fleckvieh (FV) primiparous and multiparous dairy cows from 12 dairy research farms in Germany were observed over a period of 2 yr. Farm staff and veterinarians recorded health data. We modeled health and production data with threshold random regression models and linear random regression models. From DIM 2 to 305 average daily DMI was 22.1 kg/d in GH and 20.2 kg/d in FV. Average weekly EB was 2.8 MJ of NEL/d in GH and 0.6 MJ of NEL/d in FV. Most diseases occurred in the first 20 DIM. Multiparous cows were more susceptible to diseases than primiparous cows. Relative percentages of diseased cows were highest for claw and leg diseases, followed by metabolic diseases and mastitis. Repeatability of disease categories and production traits was moderate to high. Cow effect correlations for disease categories were higher for adjacent lactation stages than for more distant lactation stages. Pearson correlation coefficients between cow effects for DMI, as well as EB, and disease categories were estimated from DIM 2 to 305. Almost all correlations were negative in GH, especially in early lactation. In FV, the course of correlations was similar to GH, but correlations were mostly more negative in early lactation. For the first 20 DIM, correlations ranged from ?0.31 to 0.00 in GH and from ?0.42 to ?0.01 in FV. The results illustrate that future breeding for dairy cow efficiency should focus on DMI and EB in early lactation to avoid health problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号