首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High gas temperatures can be reached inside a hydrogen tank during the filling process because of the large pressure increase (up to 70–80 MPa) and because of the short time (∼3 min) of the process. High temperatures can potentially jeopardize the structural integrity of the storage system and one of the strategies to reduce the temperature increase is to pre-cool the hydrogen before injecting it into the tank. Computational Fluid Dynamics (CFD) tools have the capabilities of capturing the flow field and the temperature rise in the tank. The results of CFD simulations of fast filling with pre-cooling are shown and compared with experimental data to assess the accuracy of the CFD model.  相似文献   

2.
The requirements regarding the refuelling process in order to prevent over-heating and over-filling significantly influence hydrogen fuelling station design and have a strong impact on potential fuelling performance. Consequently, refuelling station costs, reliability, and performance can be substantially improved by working on the way these requirements are formulated, in order to achieve shorter fuelling duration with a simpler process and less cooling. Two potential optimization opportunities were extensively investigated in the course of the EU funded HyTransfer project: (i) Application of the temperature limits to the tank material rather than to the gas inside the tank, (ii) Specification of the average delivery temperature rather than of the delivery temperature profile. Multiple research activities were carried out to this end. New models of various types were developed for predicting both the gas and material temperatures inside a vessel during filling and defueling. An experimental programme involving 82 filling and emptying tests of instrumented Type 4 and Type 3 vessels was performed for validating these models. New methods were developed and applied for determining the value of the gas-to-wall heat transfer coefficient from the temperature measurements. The balance of heat transferred from the gas to the liner and to the bosses in a type 4 vessel was reconstructed. CFD simulations were performed for analysing temperature disparities, and the thermal stratification observed in certain filling conditions reproduced. Criteria on gas injection conditions were identified for ensuring gas temperature homogeneity, a key assumption made by fuelling protocols. The temperature variations in the wall material were studied for future investigation of less conservative definitions of the maximum acceptable temperature in Hot Case situations. The effect of changing the delivery temperature profiles without changing the average delivery temperature was also analysed.  相似文献   

3.
High injection pressure is combined with high refueling rate for vehicles storing pressurized gaseous hydrogen onboard. As a drawback, high temperatures are developed inside the tank, which can jeopardize the structural integrity of the storage system. Computational Fluid Dynamics (CFD) codes already proved to be a valuable tool for predicting the temperature distribution within the tank during fast refueling. Results of hydrogen fast filling CFD simulations for a type IV tank, filled to 70 MPa at different working conditions are presented as follow up of the CFD model validation performed against experimental data. Alternative rates of pressure rise, adiabatic and cold filling are investigated to evaluate the effect on maximum hydrogen temperatures inside the tank. Results confirmed that the developed CFD model could be a suitable tool for investigating fast filling scenarios when experimental data are not yet available or of difficult realization.  相似文献   

4.
Compressed hydrogen tanks are now widely used for onboard hydrogen storage in fuel cell vehicles (FCVs). However, because of the high storage pressure and the low thermal conductivity of carbon fibre reinforced polymer (CFRP), the emptying of such tanks during driving or emergency release can cause a significant temperature decrease and result in an in-tank gas temperature below the low safety temperature limit of ?40 °C even in warm weather. Once the gas temperature within the tank is lower than ?40 °C, the sealing elements at the boss of the tank may fail, and glass transition of the polymer liner of the type IV tank may occur; both can cause hydrogen leakage and severe safety problems. In this paper, the heat transfer correlations, thermodynamic analyses, computational fluid dynamics (CFD) simulations, experimental studies, and thermal management methods associated with the emptying process of compressed hydrogen tanks are comprehensively reviewed. Future research directions on this topic are suggested.  相似文献   

5.
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refueling process. For safety reason, the final gas temperature in the hydrogen tank during vehicle refueling must be maintained under a certain limit, e.g., 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank, and it serves as function formula to fit experimental temperatures. From the analytical solution, the final hydrogen temperature can be expressed as a weighted average form of initial temperature, inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refueling parameters, such as initial mass, initial pressure, refueling time, refueling mass rate, average pressure ramp rate (APRR), final mass, final pressure, etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula, inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model, is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refueling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.  相似文献   

6.
The capacity of hydrogen storage by solar adsorption in activated carbon AX-21 and filling rate with simultaneous production have been conditioned under a minimum pressure, to nullify the cost of energy supplied to compressor. A gas accumulator tank connected to electrolyzer and continuous adsorption beds have been proposed in the process scheme. Minimum pressure required for the tank at an ambient filling temperature fixed to 25 °C is only 2 bar. While at atmospheric filling pressure the corresponding value of filling temperature is found to be 5 °C. However, a cooling fluid at low temperature for adsorbent bed during the adsorption process will be an efficient way for increasing the stored amount of hydrogen. Almost 4.5 kg of hydrogen can be stored in an adsorbent mass of 200 kg. The adsorption flow rate has been also modelled to be controlled for being adapted to production rate.  相似文献   

7.
In order to use gaseous hydrogen for mobility of light and heavy duty vehicles, the standard J2601 from the Society of Automotive Engineers (SAE) recommends that the temperature in the tank must not exceed 85 °C for safety reasons. Prior experiments reported that a vertical thermal stratification can occur during the filling of horizontal tanks under specific conditions. Thermodynamic modeling of hydrogen tank filling can predict the average gas temperature but not the onset of stratification. In a previous study, the computational fluid dynamics (CFD) software OpenFOAM was used to carry out simulations of hydrogen filling for a type IV 37 L tank. The CFD results, by comparison with experimental results, were capable to predict the rise of the thermal stratification with however an underestimation of thermal gradient magnitudes. The maximal temperature predicted at the end of the filling was 15.05 °C bellow the experimental measurements. In this work, the k − ω SST turbulence model is replaced by the k − ω SST SAS turbulence model to limit the prediction of high levels of eddy-viscosity in stagnation areas which over-diffuses the temperature. By using the same mesh as in the above mentioned study, (651 482 cells in the fluid region and 449 126 cells in solid regions), the k − ω SST SAS turbulence model is found to be more appropriate for CFD simulation of tank filling as it predicts a thermal gradient magnitude in the gas in better agreement with experimental measurements than the k − ω SST turbulence model for a similar time of simulation. The maximal temperature predicted at the end of the filling is 2.17 °C bellow the experimental measurements.  相似文献   

8.
Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Different types of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel and typically carbon fiber reinforced plastic (CFRP) materials are commercially used in hydrogen vessels. An aluminum lined vessel is easy to construct and posses high thermal conductivity compared to other commercially available vessels. However, compared to CFRP lined vessel, it has low strength capacity and safety factors. Therefore, nowadays, CFRP lined vessels are becoming more popular in hydrogen vehicles. Moreover, CFRP lined vessel has an advantage of light weight. CFRP, although, has many desirable properties in reducing the weight and in increasing the strength, it is also necessary to keep the material temperature below 85 °C for maintaining stringent safety requirements. While filling process occurs, the temperature can be exceeded due to the compression works of the gas flow. Therefore, it is very important to optimize the hydrogen filling system to avoid the crossing of the critical limit of the temperature rise. Computer-aided simulation has been conducted to characterize the hydrogen filling to optimize the technique. Three types of hydrogen vessels with different volumes have been analyzed for optimizing the charging characteristics of hydrogen to test vessels. Gas temperatures are measured inside representative vessels in the supply reservoirs (H2 storages) and at the inlet to the test tank during filling.  相似文献   

9.
Hydrogen-fueled vehicles offer a clean and efficient alternative for transportation. Compressed gas in high pressure tanks is a popular storage mode for hydrogen fuel. Time required for filling a hydrogen tank for vehicular applications should be short. But quick filling of hydrogen tanks at high pressures can result in high gas temperatures which can damage the tank and lead to its rupture. Hence the real time monitoring of gas temperature is essential during filling. This paper reports the findings of numerical simulation of filling process of hydrogen tanks. Real gas effects are considered. Local temperature distribution in the tank is obtained at different durations of the fill. Effect of changes in ambient temperature and initial and inlet gas temperatures is studied. Results of the study can aid in optimizing the filling time and in identifying the most suitable locations for the feedback devices within on-board hydrogen tanks.  相似文献   

10.
High-pressure storage of hydrogen in tanks is a promising option to provide the necessary fuel for transportation purposes. The fill process of a high-pressure tank should be reasonably short but must be designed to avoid too high temperatures in the tank. The shorter the fill should be the higher the maximum temperature in the tank climbs. For safety reasons an upper temperature limit is included in the requirements for refillable hydrogen tanks (ISO 15869) which sets the limit for any fill optimization. It is crucial to understand the phenomena during a tank fill to stay within the safety margins.The paper describes the fast filling process of hydrogen tanks by simulations based on the Computational Fluid Dynamics (CFD) code CFX. The major result of the simulations is the local temperature distribution in the tank depending on the materials of liner and outer thermal insulation. Different material combinations (type III and IV) are investigated.Some measurements from literature are available and are used to validate the approach followed in CFX to simulate the fast filling of tanks. Validation has to be continued in the future to further improve the predictability of the calculations for arbitrary geometries and material combinations.  相似文献   

11.
A physical model to simulate thermal behaviour of an onboard storage tank and parameters of hydrogen inside the tank during fuelling is described. The energy conservation equation, Abel-Noble real gas equation of state, and the entrainment theory are applied to calculate the dynamics of hydrogen temperature inside the tank and distribution of temperature through the wall to satisfy requirements of the regulation. Convective heat transfer between hydrogen, tank wall and the atmosphere are modelled using Nusselt number correlations. An original methodology, based on the entrainment theory, is developed to calculate changing velocity of the gas inside the tank during the fuelling. Conductive heat transfer through the tank wall, composed of a load-bearing carbon fibre reinforced polymer and a liner, is modelled by employing one-dimensional unsteady heat transfer equation. The model is validated against experiments on fuelling of Type III and Type IV tanks for hydrogen onboard storage. Hydrogen temperature dynamics inside a tank is simulated by the model within the experimental non-uniformity of 5 °C. The calculation procedure is time efficient and can be used for the development of automated hydrogen fuelling protocols and systems.  相似文献   

12.
Metal Hydrides (MH) can absorb large quantities of hydrogen at room temperature and ordinary pressure. Because MH can store hydrogen at a pressure less than 0.1 MPa safely and compactly, it is looked to as a method of storing hydrogen produced by electricity derived from renewable energy sources. To study this method of storing renewable energy, we made a MH tank system which could store hydrogen in the range of 1000 Nm3. A Mm-NiMnCo alloy was used for this MH tank system. MH becomes pulverized with absorbing and desorbing hydrogen, and this causes the problem of MH tank transformation owing to the partial distribution of the pulverized MH powders. Our MH material, named “Hydrage?,” was made using a technique to compose the MH powders with polymer materials without decreasing the hydrogen absorption and desorption rate. With this technique, the MH powders were immobilized, and strain on the MH tank was reduced. Furthermore, this technique enabled uniform dispersion of the MH powders, and high-density filling in MH tank was achieved relative to that attainable in a conventional MH tank. An MH tank system with a capacity of 1000 Nm3 is 1,800 mm in width, 3,150 mm in length, and 2,145 mm in height. The system for renewable energy storage consists of 9 tanks. About 7.2 tons of MH were used in this system. This system could work at temperatures from 25 to 35° C, and its maximum hydrogen absorption and desorption rate is 70 Nm3/h with a medium flow rate of 30 NL/min. This type of MH tank system, which can store a large amount of hydrogen safely and compactly, has the potential to become popular with various applications in the future.  相似文献   

13.
High injection pressures are used during the re-fueling process of vehicle tanks with compressed hydrogen, and consequently high temperatures are generated in the tank, potentially jeopardizing the system safety. Computational Fluid Dynamics (CFD) tools can help in predicting the temperature rise within vehicle tanks, providing complete and detailed 3D information on flow features and temperature distribution. In this framework, CFD simulations of hydrogen fast filling at different working conditions are performed and the accuracy of the numerical models is assessed against experimental data for a type 4 tank up to 70 MPa.  相似文献   

14.
Metal hydride (MH) storage is known as a safe storage method because it does not require complex processes like high pressure or very low temperature. However, it is necessary to use a heat exchanger due to the endothermic and exothermic reactions occurring during the charging and discharging processes of the MH tanks. The performance of the MH is adversely affected by the lack of a heat exchanger or a suitable temperature range and it causes non-stable hydrogen supply to the fuel cell systems. In this study, effect of the tank surface temperature on hydrogen flow and hydrogen consumption performance were investigated for the MH hydrogen storage system of a hydrogen Fuel Cell Electric Vehicle (FCEV). Different temperature values were arranged using an external heat circulator device and a heat exchanger inside the MH tank. The fuel cell (FC) was operated at three different power levels (200 W, 400 W, and 600 W) and its performance was determined depending on the temperature and discharge flow rate of the MH tank. When the heat exchanger temperature (HET) was set to 40 °C, the discharge performance of the MH tank increased compared to lower temperatures. For example, when the FC power was set to 200 W and the HET of the system was at 40 °C, 1600 L hydrogen was supplied to the FC and 2000 Wh electrical energy was obtained. The results show that the amount of hydrogen supplied from the MH tank decreases significantly by increasing the flow rate in the system and rapid temperature changes occur in the MH tank.  相似文献   

15.
We report modeling results for hydrogen releases associated with deploying hydrogen fuel cell technology on vessels. This first paper (I) considers hydrogen releases through the vessel Vent Mast from 250-bar hydrogen gas storage tanks, the type of tanks being used for the first hydrogen vessels. A manifolded 10-tank hydrogen storage system, holding 278 kg of hydrogen, can be emptied in ~10 min for maintenance purposes, with a pressure reduction to half the original pressure (125 bar) realized in 2 min if a rapid pressure reduction is needed, for example in the event of a fire. The time profile for filling a tank is also of interest so as not to exceed the tank thermal limits. The calculations show that a manifolded 10-tank array can be filled with hydrogen to 250-bar pressure in ~2 h from a 350-bar hydrogen refueling trailer without exceeding the 85 °C temperature limit typical of Type IV hydrogen tanks.Computational fluid dynamic (CFD) modeling shows that when the hydrogen is released out of the 10-tank array and into the Vent Mast in a 5-mph wind blowing horizontally, the effect of the wind on the hydrogen dispersion strongly depends on the hydrogen exit speed. For high release speeds (~800–900 m/s), the hydrogen flow is strongly momentum-driven, and there is modest cross-wind influence. For low hydrogen exit speeds (~10 m/s), the hydrogen is readily entrained in the wind flow and blown sideways, with the downstream flammable envelope rising at a positive angle to the horizontal due to buoyancy. To capture the influence of a wind with a downward component (e.g., created by a downdraft near a building), a calculation of a low-velocity (8.6 m/s) hydrogen release was performed with a 5-mph wind pointed downward at a 45° angle. The results show that despite the buoyancy of hydrogen, the wind blows the hydrogen substantially downward for low hydrogen speeds exiting the Vent Mast.  相似文献   

16.
De/rehydrogenation kinetics and reversibility of MgH2 are improved by doping with activated carbon nanofibers (ACNF) and compositing with LiBH4. Via doping with 5 wt % ACNF, hydrogen absorption of Mg to MgH2 (T = 320 °C and p(H2) = 50 bar) increases from 0.3 to 4.5 wt % H2. Significant reduction of onset dehydrogenation temperature of MgH2 to 340 °C (ΔT = 70 °C as compared with pristine MgH2) together with 6.8–8.2 wt % H2 can be obtained by compositing Mg-5 wt. % ACNF with LiBH4 (LiBH4:Mg mole ratios of 0.5:1, 1:1, and 2:1). During dehydrogenation of Mg-rich composites (0.5:1 and 1:1 mol ratios), the formation of MgB2 and Mg0.816Li0.184 implying the reaction between LiBH4 and MgH2 favors kinetic properties and reversibility, while the composite with 2:1 mol ratio shows individual dehydrogenation of LiBH4 and MgH2. For up-scaling to hydrogen storage tank (~120 times greater sample weight than laboratory scale) of the most suitable composite (1:1 mol ratio), de/rehydrogenation kinetics and hydrogen content released at all positions of the tank are comparable and approach to those from laboratory scale. Due to high purity (100%) and temperature of hydrogen gas from hydride tank, the performance of single proton exchange membrane fuel cell enhances up to 30% with respect to the results from compressed gas tank.  相似文献   

17.
Dealing with the conflict between the temperature/pressure rise and the total mass of hydrogen is a key challenge for rapid hydrogen filling of the hydrogen storage tank (HST). The temperature/pressure rise and total mass of hydrogen cause safety risks because of the former and limited cruise as the result of the latter. Therefore, safe hydrogen filling strategy is essential for the promotion of hydrogen fuel cell vehicles (FCVs). The existing thermodynamic model of the hydrogen storage tank is simplified either in the hydrogen state or the heat conduction of the HST wall, which can be hardly used as the real-time and accurate references for developing the filling strategy. To solve this problem, this paper works out the mathematical expression of a HST thermodynamic model. With the proposed HST thermodynamic model, a variable mass flow hydrogen filling strategy is developed. The results show that at the mass flow (12  g/s), the errors of the thermodynamic model are 7.1% and 6.8% for the temperature and pressure rise, compared with the computational fluid dynamics (CFD) model. At the mass flow (4.84  g/s), the thermodynamic model errors are 8.3% and 7.1% for the temperature and pressure rise, compared with the experimental data. Also, compared with the rule-based hydrogen filling strategies, the final state of charge (SoC) with the new filling strategy improve by 3%, 3.7%, and 2.7% at different initial temperatures, different volumes, and initial SoCs, respectively.  相似文献   

18.
Metal Hydride Compressors (MHC) is a promising technology for thermal compression of hydrogen. Besides the absence of a necessity for significant mechanical or electrical energy input, this type of compressor has the advantage that no moving parts are involved. A brief review on the reported experimental set ups of metal hydride compressors is carried out and compared to the metal hydride compressor developed and constructed by HYSTORE Technologies Ltd in Cyprus. The compressor built by HYSTORE consists of 6 stages using AB2 and AB5 – type metal hydride alloys. The MHC is operated between 10 C and 80 °C, which is a temperature range that can be supplied by solar thermal collectors. Furthermore, the experimental results showed, that even lower temperatures of 17 C are sufficient thus reducing the demand for cooling capacity. During the operation, the compressor achieved stable compression of hydrogen from 7 bar more than 220 bar. The specific productivity of the compressor achieved values up to 67.2 lH2 kg?1 h?1.  相似文献   

19.
We report enhanced low temperature hydrogen storage properties of magnesium “nanotrees” fabricated by glancing angle deposition (GLAD) method. The arrays of nanotrees and conventional thin films of elemental Mg have been deposited directly onto gold coated unpolished quartz crystal substrates. Mg nanotrees were about 15 μm in height, 10 μm by 1 μm in lateral size, and were composed of “nanoleaves” of about 20 nm in thickness, 2 μm length, and 1 μm width. Hydrogen absorption and desorption properties of Mg nanotrees and thin films were investigated using a quartz crystal microbalance (QCM) testing system that is capable of measuring weight changes with a nanogram sensitivity. QCM absorption tests were performed at temperatures 100, 200, and 300 °C under 30 bars of H2 pressure. Measurements revealed that Mg nanotrees can absorb hydrogen at significantly higher weight percentage (wt%) and faster rates compared to conventional Mg films under similar conditions. Hydrogen storage of Mg thin film was observed to be at 0.02, 0.30 and 3.91 wt% (weight percentage), while it reached to 1.26, 3.75, and 5.86 wt% for nanotrees at temperatures 100, 200, and 300 °C, respectively, after 150 min. In addition, the results of desorption experiments show that Mg nanotrees can start to release hydrogen at temperatures as low as 100 °C at a rate of 0.11 wt% (vs. 0.01 wt% for thin film at the same temperature) with desorption rates reaching to 1.05 wt% at 200 °C (0.26 wt% for thin film) and 2.57 wt% at 300 °C (1.45 wt% for thin film), which are considerably lower desorption temperatures compared to previously reported values for bulk Mg (>300 °C). The enhancement in hydrogen absorption and desorption properties of Mg nanotrees is believed to originate from their thin and isolated nanoleaves that also have an improved oxidation resistance property.  相似文献   

20.
At the JRC-IET, on-board hydrogen tanks have been subjected to filling–emptying cycles to investigate their long-term mechanical and thermal behaviour and their safety performance. The local temperature history inside the tanks has been measured and compared with the temperatures outside and at the tank metallic bosses, which is the measurement location identified by some standards. The outcome of these activities is a set of experimental data which will be made publicly available as reference for safety studies and validation of computational fluid dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号