首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A central composite design was carried out to investigate the effect of temperature, initial pH and glucose concentration on fermentative hydrogen production by mixed cultures in batch test. The modeling abilities of the response surface methodology model and neural network model, as well as the optimizing abilities of response surface methodology and the genetic algorithm based on a neural network model were compared. The results showed that the root mean square error and the standard error of prediction for the neural network model were much smaller than those for the response surface methodology model, indicting that the neural network model had a much higher modeling ability than the response surface methodology model. The maximum hydrogen yield of 289.8 mL/g glucose identified by response surface methodology was a little lower than that of 360.5 mL/g glucose identified by the genetic algorithm based on a neural network model, indicating that the genetic algorithm based on a neural network model had a much higher optimizing ability than the response surface methodology. Thus, the genetic algorithm based on a neural network model is a better optimization method than response surface methodology and is recommended to be used during the optimization of fermentative hydrogen production process.  相似文献   

2.
A newly isolated strain Enterococcus faecium INET2 was used as inoculum for biohydrogen production through dark fermentation. The individual and interactive effect of initial pH, operation temperature, glucose concentration and inoculation amount on the accumulation of hydrogen during fermentation was examined by a Box–Behnken Design (BBD), and hydrogen production process was analyzed at the optimal condition. A significant interactive effect between glucose concentration and pH was observed, the optimal condition was initial pH 7.1, operation temperature 34.8 °C, glucose concentration 11.3 g/L and inoculation amount 10.4%. Hydrogen yield, maximum hydrogen production rate and hydrogen production potential were determined to be 1.29 mol H2/mol glucose, 86.7 L H2/L/h and 1.35 L H2/L. Metabolites analysis showed that E. faecium INET2 followed the pyruvate: formate lyase (Pfl) pathway in first 16 h, followed by the acetate-type fermentation and then shifted to butyrate-type fermentation. Maximum hydrogen production rate was accompanied with a quick formation of acetic acid.  相似文献   

3.
Sago wastewater (SWW) causes pollution to the environment due to its high organic content. Annually, about 2.5 million tons of SWW is produced in Malaysia. In this study, the potential of SWW as a substrate for biohydrogen production by Enterobacter aerogenes (E. aerogenes) was evaluated. Response Surface Methodology (RSM) was employed to find the optimum conditions. From preliminary optimization, it was found that the most significant factors were yeast extract, temperature, and inoculum size. According to Face Centered Central Composite Design (FCCCD), the maximum hydrogen concentration and yield were 630.67 μmol/L and 7.42 mmol H2/mol glucose, respectively, which is obtained from the sample supplemented with 4.8 g/L yeast extract concentration, 5% inoculum, and incubated at the temperature of 31 °C. Cumulative hydrogen production curve fitted by the modified Gompertz equation suggested that Hmax, Rmax, and λ from this study were 15.10 mL, 2.18 mL/h, and 9.84 h, respectively.  相似文献   

4.
Hydrogen fermentation is a very complex process and is greatly influenced by many factors. Previous studies have demonstrated that temperature, pH and substrate are important factors controlling biological H2 production. Response surface methodology with central composite design was used in this study to optimize H2 production from glucose by an anaerobic culture. The individual and interactive effects of pH, temperature and glucose concentration on H2 production were also evaluated. The optimum conditions for maximum H2 yield of 1.75 mol-H2 mol-glucose−1 were found as temperature 38.8 °C, pH 5.7 and glucose concentration 9.7 g L−1. The linear effects of temperature and pH as well as their quadratic effects on H2 yield were significant, while the interactive effects of three parameters were minor.  相似文献   

5.
Single-stage hydrogen production from glucose was investigated using the marine photosynthetic bacterium Rhodovulum sulfidophilum TH-79, a Tn7 transposon mutant of strain P5. The mutation in strain TH-79 did not affect its cell growth in glucose medium compared with the parent strain. TH-79 displayed improved photoheterotrophic hydrogen production performance when the medium contained glucose or galactose as the sole carbon source. The mutant produced about 7.07 mol H2/mol glucose, which is similar to the yields of more complicated integration systems. A one-stage photofermentation system using a seawater culture medium appears to be a promising alternative to the integration of dark- and photofermentation systems.  相似文献   

6.
Clostridium butyricum EB6 successfully produced hydrogen gas from palm oil mill effluent (POME). In this study, central composite design and response surface methodology were applied to determine the optimum conditions for hydrogen production (Pc) and maximum hydrogen production rate (Rmax) from POME. Experimental results showed that the pH, temperature and chemical oxygen demand (COD) of POME affected both the hydrogen production and production rate, both individually and interactively. The optimum conditions for hydrogen production (Pc) were pH 5.69, 36 °C, and 92 g COD/l; with an estimated Pc value of 306 ml H2/g carbohydrate. The optimum conditions for maximum hydrogen production rate (Rmax) were pH 6.52, 41 °C and 60 g COD/l; with an estimated Rmax value of 914 ml H2/h. An overlay study was performed to obtain an overall model optimization. The optimized conditions for the overall model were pH 6.05, 36 °C and 94 g COD/l. The hydrogen content in the biogas produced ranged from 60% to 75%.  相似文献   

7.
Acetone-butanol-ethanol (ABE) fermentation guarantees a sustainable route for biohydrogen and biobutanol production. This research work is committed towards the enhancement of biohydrogen and biobutanol production by single and multi-parameter optimization for the improvement of substrate energy recovery using C. saccharoperbutylacetonicum. Single parameters optimization (SPO) manifested that headspace of 60% (v/v) and butyric acid supplementation of 9 g/L and temperatures of 30 °C and 37 °C were suitable for obtaining maximum biohydrogen and biobutanol production, respectively. The interaction between these parameters was further evaluated by implementing a 5-level 3-factor Central Composite Design (CCD). In the present study, a central composite design was employed to enhance the biohydrogen and biobutanol production. In addition, the experimental results were analyzed by response surface methodology (RSM) and artificial intelligence (AI) techniques such as artificial neural network (ANN). The prediction capability of RSM was further compared with ANN for predicting the optimum parameters that would lead to maximum biohydrogen and biobutanol production. ANN yielded higher values of biohydrogen and biobutanol. ANN was found to be superior as compared to RSM in terms of prediction accuracy for both biohydrogen and biobutanol because of its higher coefficient of determination (R2) and lower root mean square error (RMSE) value. Process temperature (32.65 °C), headspace (58.21% (v/v)) and butyric acid supplementation (9.16 g/L) led to maximum substrate energy recovery of 78% with biohydrogen and biobutanol production of 5.9 L/L and 16.75 g/L, respectively. Process parameter optimization led to a significant increase in substrate energy recovery from Biphasic fermentation.  相似文献   

8.
Biomass has been recognized as a viable source for energy and bio-based chemicals. This study reported furfural production from millet husk via simultaneous hydrolysis and dehydration processes. Effect of reaction variables such as temperature (120–200°C), resident time (15–45 min), and acid concentration (5–10%) was studied using central composite design. Furfural yield (71.55%) was achieved at 184°C, 39 min, and 9% acid concentration. FT-IR spectrum of the produced furfural showed absorption at 1,697 and 2,880 cm?1 indicating a conjugated carbonyl functional group and aldehydic hydrogen. The results revealed that millet husk could be a potential substrate for furfural production.  相似文献   

9.
Microalgae and cyanobacteria can be used as a potential biomass to produce hydrogen from stored glycogen and starch through fermentation and photofermentation. In this study, the potential of algal biomass i.e. Spirulina platensis hydrolysate as a substrate for sequential fermentative (I-stage) and photo-fermentative (II-stage) biohydrogen production was evaluated. Response Surface Methodology (RSM) was employed to find the optimum photofermentation conditions. From the preliminary optimization experiments, it was found that the significantly affecting factors for H2 production were pH, dilution fold (D.F.) of fermentate and Fe(II) sulfate concentration during photofermentation (second stage). In the present study, 1% (w/v) Spirulina platensis hydrolyzate produced 23.06 ± 3.63 mmol of H2 with yield of 1.92 ± 0.20 mmol H2/g COD reduced. In the second stage experiment 1510 ± 35 mL/l hydrogen was produced using inoculum volume-20.0% (v/v) and inoculum age-48 h of co-culture of Rhodobacter sphaeroides NMBL-01 and Bacillus firmus NMBL-03 under conditions pH-5.95, D.F. of dark fermentate-20.30 folds, Fe(II) sulfate concentration-0.412 μM, temperature-32±2 °C and light intensity-2.5 klux.  相似文献   

10.
In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by the psychrophilic N92 strain (EU636058) isolated from Antarctica, which is closely related to Pseudorhodobacter sp. (KT163920). The influence of operational conditions such as temperature (4.7–55.2 °C), initial pH (3.44–10.16), and initial glucose concentration (4.7–55.23 g/dm3), as well as the initial concentrations of (NH4)2SO4 (0.05–3.98 g/dm3), FeSO4 (0.02–1.33 g/dm3) and NaHCO3 (0.02–3.95 g/dm3) was evaluated. The linear effect of glucose concentration, along with the quadratic effect of all the six factors were the most significant terms affecting the biohydrogen yield by N92 strain. The optimum conditions for the maximum hydrogen yield of 1.7 mol H2/mol glucose were initial pH of 6.86, glucose concentration of 28.4 g/dm3, temperature 29 °C and initial concentration of (NH4)2SO4, FeSO4 and NaHCO3 of 0.53, 1.55 and 1.64 g/dm3 respectively. Analysis of the metabolites produced under the optimum conditions showed that the most abundant were acetic acid (0.8 g/dm3), butyric acid (0.7 g/dm3) and ethanol (2.1 g/dm3). We suggest that the bioprocess established in this study using the strain N92 could be an alternative for hydrogen production with the advantages of constituting low energy costs in fermentation.  相似文献   

11.
In this study, the optimization of hydrogen production by photocatalytic steam methane reforming over Lanthanum modified TiO2 has been investigated using response surface methodology. The La/TiO2 photocatalysts were synthesized using wet impregnation method and characterized for physicochemical and photocatalytic properties by N2 physisorption, X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), and ultraviolet-visible (UV-vis) spectroscopy. The characterization shows that the La/TiO2 possesses appropriate properties to be used as photocatalysts. The photocatalysts were employed in the optimization studies of hydrogen production by photocatalytic steam methane reforming. The effects of irradiation time (10–150 min), metal loading (1–3%), methane concentration (10–50%), and steam concentration (0.5–1.5%) on the rate of hydrogen production were determined employing Box-Behnken experimental design. The application of the RSM resulted in the formulation of four models out which the quadratic model was adjudged to adequately fit the experimental data. A further statistical analysis of the quadratic model established the significance of the model with p-value far less than 0.05 and coefficient of determination (R2) of 0.975. A non-significant lack of fit obtained for the model further confirm the suitability of the quadratic model in fitting the experimental data. At the desirability function of 1, optimum conditions of 146.15 min, 2.94%, 22.83% and 1.24% for irradiation time, metal loading, methane concentration, and steam concentration, respectively resulted in the production of 2.42 μmol of hydrogen/min.  相似文献   

12.
In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 °C, N2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition.  相似文献   

13.
The effect of temperature, initial pH and glucose concentration on fermentative hydrogen production by mixed cultures was investigated in batch tests, and the optimization of fermentative hydrogen production process was conducted by response surface methodology with a central composite design. Experimental results showed that temperatures, initial pH and glucose concentrations had impact on fermentative hydrogen production individually and interactively. The maximum hydrogen yield of 289.8 mL/g glucose was estimated at the temperature of 38.6 °C, the initial pH of 7.2 and the glucose concentration of 23.9 g/L. The maximum hydrogen production rate of 28.2 mL/h was estimated at the temperature of 37.8 °C, the initial pH of 7.2 and the glucose concentration of 27.6 g/L. The maximum substrate degradation efficiency of 96.9% was estimated at the temperature of 39.3 °C, the initial pH of 7.0 and the glucose concentration of 26.8 g/L. Response surface methodology was a better method to optimize the fermentative hydrogen production process. Modified logistic model could describe the progress of cumulative hydrogen production in the batch tests of this study successfully.  相似文献   

14.
In the present study, Annona squamosa seed oil has been evaluated as a potential feedstock for biodiesel production. The response surface methodology was used to determine the optimal conditions for the biodiesel production using a central composite design. A quadratic polynomial was developed to predict the response as a function of independent variables and their interactions and only the significant factors affecting the yield were fitted to a second-order response surface reduced 2 factor interaction (2FI) model. Four process variables were assessed at five levels. A biodiesel yield of 98.19% was obtained at optimum conditions: 7.53:1 methanol to oil molar ratio, 1.18 wt% catalyst concentration, reaction temperature of 59.55°C, and reaction time of 47.29 min.  相似文献   

15.
A novel hydrogen-producing strain was isolated from gamma irradiated digested sludge and identified as Clostridium butyricum INET1. The fermentative hydrogen production performance of the newly isolated C. butyricum INET1 was characterized. Various carbon sources, including glucose, xylose, sucrose, lactose, starch and glycerol were used as substrate for hydrogen production. The operational conditions, including temperature, initial pH, substrate concentration and inoculation proportion were evaluated for their effects on hydrogen production, and the optimal condition was determined to be 35 °C, initial pH 7.0, 10 g/L glucose and 10% inoculation ratio. Cumulative hydrogen production of 218 mL/100 mL and hydrogen yield of 2.07 mol H2/mol hexose was obtained. The results showed that C. butyricum INET1 is capable of utilizing different substrates (glucose, xylose, sucrose, lactose, starch and glycerol) for efficient hydrogen production, which is a potential candidate for fermentative hydrogen production.  相似文献   

16.
A batch study for biohydrogen production was conducted using raw palm oil mill effluent (POME) and POME sludge as a feed and inoculum respectively. Response Surface Methodology (RSM) was used to design the experiments. Experiments were conducted at different reaction temperatures (30–50 °C), inoculum size to substrate ratios (I:S) and reaction times (8–24 h). An optimum condition of biohydrogen production was achieved with COD removal efficiency of 21.95% with hydrogen yield of 28.47 ml H2 g?1 COD removed. The I:S ratio was 40:60, with reaction temperature of 50 °C at 8 h of reaction time. The study showed that a lower substrate concentration (less than 20 g L?1) for biohydrogen production using pre-settled POME was achievable, with optimum HRT of 8 h under thermophilic condition (50 °C). This study also found that pre-settled POME is feasible to be used as a substrate for biohydrogen production under thermophilic condition.  相似文献   

17.
Light-dependent hydrogen production by platinized Photosystem I isolated from the cyanobacterium Thermosynechococcus elongatus BP-1 was optimized using response surface methodology (RSM). The process parameters studied included temperature, light intensity and wavelength, and platinum salt concentration. Application of RSM generated a model that agrees well with the data for H2 yield (R2 = 0.99 and p < 0.001). Significant effects on the total H2 yield were seen when the platinum salt concentration and temperature were varied during platinization. However, light intensity during platinization had a minimal effect on the total H2 yield within the region studied. The values of the parameters used during the platinization that optimized the production of H2 were light intensity of 240 μE m−2 s−1, platinum salt concentration of 636 μM and temperature of 31 °C. A subsequent validation experiment at the predicted conditions for optimal process yield gave the maximum H2 yield measured in the study, which was 8.02 μmol H2 per mg chlorophyll.  相似文献   

18.
This study uses a palladium membrane to separate hydrogen from an H2/CO2 (90/10 vol%) gas mixture. Three different operating parameters of temperature (320–380 °C), total pressure difference (2–3.5 atm), and vacuum degree (15–49 kPa) on hydrogen are taken into account, and the experiments are designed utilizing a central composite design (CCD). Analysis of variance (ANOVA) is also used to analyze the importance and suitability of the operating factors. Both the H2 flux and CO2 (impurity) concentration on the permeate side are the targets in this study. The ANOVA results indicate that the influences of the three factors on the H2 flux follow the order of vacuum degree, temperature, and total pressure difference. However, for CO2 transport across the membrane, the parameters rank as total pressure difference > vacuum degree > temperature. The predictions of the maximum H2 flux and minimum CO2 concentration by the response surface methodology are close to those by experiments. The maximum H2 flux is 0.2163 mol s?1 m?2, occurring at 380 °C, 3.5 atm total pressure difference, and 49 kPa vacuum degree. Meanwhile, the minimum CO2 concentration in the permeate stream is t 643.58 ppm with the operations of 320 °C, 2 atm total pressure difference, and 15 kPa vacuum degree. The operation with a vacuum can significantly intensify H2 permeation, but it also facilitates CO2 diffusion across the Pd membrane. Therefore, a compromise between the H2 flux and the impurity in the treated gas should be taken into account, depending on the requirement of the gas product.  相似文献   

19.
The dark fermentation process promises a sustainable route for biohydrogen production. But the low substrate conversion efficiency hinders its commercial feasibility. The present study aims towards simultaneous hydrogen and butanol production to enhance the net energy recovery. Process parameters optimization revealed that pH of 6.5, temperature of 37 °C and inoculum size of 7% (v/v) were suitable for obtaining maximum hydrogen and butanol yields by C. saccharoperbutylacetonicum. Starch and xylan were observed to be preferred carbon sources suggesting effective utilization of C5 and C6 sugars. The maximum hydrogen yield of 264.3 mL g−1 starch and 216 mL g−1 xylan and butanol yield of 0.27 g g−1 starch and 0.24 g g−1 xylan were obtained with overall energy recovery of 85.61% (starch) and 75.22% (xylan), respectively. The present research work indicates the potency of bi-phasic fermentation to boost energy recovery from starch/xylan based feedstock.  相似文献   

20.
Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1 mol of hydrogen per mole of glucose at a maximum under illuminated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号