共查询到20条相似文献,搜索用时 0 毫秒
1.
Liang Gong Qiangling Duan Jialong Liu Mi Li Ping Li Kaiqiang Jin Jinhua Sun 《International Journal of Hydrogen Energy》2018,43(52):23558-23567
This paper investigates the effects of hydrogen additions on spontaneous ignition of high-pressure hydrogen released into hydrogen-air mixture. Hydrogen and air are premixed with different volume concentrations (0%, 5%, 10%, 15% and 20% H2) in the tube before high-pressure hydrogen is suddenly released. Pressure transducers are employed to detect the shock waves, estimate the mean shock wave speed and record the shock wave overpressure. Light sensors are used to determine the occurrence of high-pressure hydrogen spontaneous ignition in the tube. A high-speed camera is used to capture the flame propagation behavior outside the tube. It is found that only 5% hydrogen addition could decrease the minimum storage pressure required for spontaneous ignition from 4.37 MPa to 2.78 MPa significantly. When 10% or 15% hydrogen is added to the air, the minimum storage pressure decreases to 2.81 MPa and 1.85 MPa, respectively. When hydrogen addition increases to 20%, the spontaneous ignition even takes place at burst pressure as low as 1.79 MPa inside the straight tube. 相似文献
2.
Hydrogen is expected to serve as a clean energy carrier. However, since there are serious ignition hazards associated with its use, it is necessary to collect data on safety in a range of possible accident scenarios so as to assess hazards and develop mitigation measures. When high-pressure hydrogen is suddenly released into the air, a shock wave is produced, which compresses the air and mixes it with hydrogen at the contact surface. This leads to an increase in the temperature of the hydrogen–air mixture, thereby increasing the possibility of ignition. We investigated the phenomena of ignition and flame propagation during the release of high-pressure hydrogen. When a hydrogen jet flame is produced by self-ignition, the flame is held at the pipe outlet and a hydrogen jet flame is produced. From the experiment using the measurement pipe, the presence of a flame in the pipe is confirmed; further, when the burst pressure increased, the flame may be detected at a position near the diaphragm. At the pipe outlet, the flame is not lifted and self-ignition is initiated at the outer edge of the jet. 相似文献
3.
J.D. Blouch 《Combustion and Flame》2003,132(3):512-522
Experiments were conducted to determine the effects of turbulence on the temperature of a heated air jet required to ignite a counterflowing cold hydrogen/nitrogen jet. In contrast to pseudo-turbulent flows, where turbulence was generated by only a perforated plate on the fuel side, resulting in little effect on ignition in a hydrogen system, fully turbulent flows with perforated plates on both sides of the flow were found to produce noticeable effects. The difference was attributed to the fact that in fully turbulent flows, a significantly larger range of turbulent eddies extend to smaller scales than in pseudo-turbulent flows. At atmospheric pressure, the lowest turbulence intensity studied had ignition temperatures notably lower than laminar ones, while further increases in turbulence intensity resulted in rising ignition temperatures. As a result, optimal conditions for nonpremixed hydrogen ignition exist in weakly turbulent flows where the ignition temperature is lower than can be obtained in other laminar or turbulent flows at the same pressure. Similar trends were seen for all fuel concentrations and at all pressures in the second ignition limit (below 3-4 atm). At higher pressures, turbulent flows caused the ignition temperatures to continue to follow the second limit resulting in ignition temperatures higher than the laminar values. The extension of the second limit ends at the highest pressures (7 to 8 atm) where evidence of third limit behavior appears. Three mechanisms were noted to explain the experimental results. First, turbulent eddies similar in size to the ignition kernel can promote discrete mixing of otherwise isolated pockets of gas. Second, this mixing can promote HO2 chain branching pathways, which can account for the enhanced ignition noted in the second limit where reaction is governed by crossover temperature chemistry. Third, turbulence limits the excursion times available for reaction, inordinately affecting the slower HO2 reactions. This is responsible for the increasing ignition temperature with turbulence intensity and pressure. 相似文献
4.
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern, e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.Parametric studies were also conducted to investigate the effect of rupture time, release pressure, tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value, even though ignition could take place inside the tube, the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched. 相似文献
5.
Hiroshi Terashima Mitsuo Koshi Chika Miwada Toshio Mogi Ritsu Dobashi 《International Journal of Hydrogen Energy》2014
A two-dimensional (2-D) simulation of spontaneous ignition of high-pressure hydrogen in a length of duct is conducted to explore ignition mechanisms. The present study adopts a 2-D rectangular duct and focuses on effects of the initial diaphragm shape on spontaneous ignition. The Navier–Stokes equations with a detailed chemical kinetics mechanism are solved in a manner of direct numerical simulation. The detailed mechanisms of spontaneous ignitions are discussed for each initial diaphragm shape. For a straight diaphragm, ignition only occurs near the wall owing to the adiabatic wall condition, while three ignition events are identified for a greatly deformed diaphragm: ignition due to reflection of leading shock wave at the wall, hydrogen penetration into shock-heated air near the wall, and deep penetration of hydrogen into shock-heated air behind the leading shock wave. 相似文献
6.
The experimental study was carried out on a multi-cylinder spark ignition engine fueled with hydrogen for analyzing the effect of knocking on backfire and its control by varying operating parameters. The experimental tests were conducted with constant speed at varied equivalence ratio. The equivalence ratio of 0.82 was identified as backfire occurring equivalence ratio (BOER). The backfire was identified by high pitched sound and rise in in-cylinder pressure during suction stroke. In order to analyze backfire at equivalence ratio of 0.82, the combustion analysis was carried out on cyclic basis. Based on the severity of in-cylinder pressure during suction stroke, the backfire can be divided into two categories namely low intensity backfire (LIB) and high intensity backfire (HIB). From this study, it is observed that there is frequent LIB in hydrogen fueled spark ignition engine during suction stroke, which promotes instable combustion and thus knocking at the end of compression stroke. This knocking creates high temperature sources in the combustion chamber and thus causes HIB to occur in the subsequent cycle. A notable salient point emerged from this study is that combustion with knocking can be linked with backfire as probability of backfire occurrence decreases with reduction in chances of knocking. Retarding spark timing and delaying injection timing of hydrogen were found to reduce the chances of backfire occurrence. The backfire limiting spark timing (BLST) and backfire limiting injection timing (BLIT) were found as 12 0bTDC and 40 0aTDC respectively. 相似文献
7.
Hydrogen sulfide is a common impurity that can greatly change the combustion properties of fuels, even when present in small concentrations. However, the combustion chemistry of H2S is still poorly understood, and this lack of understanding subsequently leads to difficulties in the design of emission-control and energy-production processes. During this study, ignition delay times were measured behind reflected shock waves for mixtures of 1% H2/1% O2 diluted in Ar and doped with various concentration of H2S (100, 400, and 1600 ppm) over large pressure (around 1.6, 13, and 33 atm) and temperature (1045–1860 K) ranges. Results typically showed a significant increase in the ignition delay time due to the addition of H2S, in some cases by a factor of 4 or more over the baseline mixtures with no H2S. The magnitude of the increase is highly dependent on the temperature and pressure. A detailed chemical kinetics model was developed using recent, up-to-date detailed-kinetics mechanisms from the literature and by changing a few reaction rates within their reported error factor. This updated model predicts well the experimental data obtained during this study and from the shock-tube literature. However, flow reactor data from the literature were poorly predicted when H2S was a reactant. This study highlights the need for a better estimation of several reaction rates to better predict H2S oxidation chemistry and its effect on fuel combustion. Using the kinetics model for sensitivity analyses, it was determined that the decrease in reactivity in the presence of H2S is because H2S initially reacts before the H2 fuel does, mainly through the reaction H2S + H ? SH + H2, thus taking H atoms away from the main branching reaction H + O2 ? OH + O and inhibiting the ignition process. 相似文献
8.
In the present study, the self-ignition of high-pressure hydrogen released in atmospheric air through a diaphragm is visualized under various test conditions. The experimental results indicate that the hydrogen that jets through the rupturing diaphragm is mixed with the heated air near the tube wall. The self-ignition event originated from this mixing. The self-ignition was strongly dependent on the strength of an incident shock wave generated at the diaphragm rupture. As a result, a cylindrical flame that formed after the self-ignition shows a tendency to become longer as it propagates in the downstream direction. The head velocities of the hydrogen-air mixture and the cylindrical flame are consistent with that of a contact surface calculated from the measured shock speed. A modified self-ignition mechanism is proposed based on the experimental observations. 相似文献
9.
The effect of a shock wave on the ignition behavior of 5 μm aluminum (Al) particles was studied in a series of experiments by means of a horizontal shock tube with an inner diameter of 70 mm. To isolate the shock effect from other effects, the experiments were conducted in an inert argon (Ar) atmosphere in addition to a few control experiments in air. The use of Ar as driven gas also helps to produce strong shocks. Every aluminum particle is initially covered with a layer of amorphous aluminum oxide (Al2O3). The Al2O3 passivates the particle, thus playing a key role in the ignition and combustion mechanisms of an Al particle. The experiments showed a strong emission of light originating from the particles immediately after the shock wave has passed them. Spectral analysis revealed strong AlO bands even in experiments in which the volatilization temperature of Al2O3 was not exceeded. The emission spectrum of the flame permits the determination of a grey-body temperature. The existence of AlO molecules and the analysis of samples taken after an experiment give a strong evidence of the influence of a shock wave on the ignition and reaction mechanism of Al particle combustion. 相似文献
10.
Spontaneous ignition of a pressurized hydrogen release has important implications in the risk assessment of hydrogen installations and design of safety measures. In real accident scenarios, an obstacle may be present close to the release point. Relatively little is known about the effect of such an obstacle on the salient features of highly under-expanded hydrogen jets and its spontaneous ignition.In the present study, the effect of a thin flat obstacle on the spontaneous ignition of a direct pressurized hydrogen release is investigated using a 5th-order WENO scheme and detailed chemistry. The numerical study has revealed that, for the conditions studied, the presence of the obstacle plays an important role in quenching the flame following spontaneous ignition for the release conditions considered. 相似文献
11.
Simona Silvia Merola Silvana Di Iorio Adrian Irimescu Paolo Sementa Bianca Maria Vaglieco 《International Journal of Hydrogen Energy》2017,42(18):13276-13288
In the context of stringent exhaust gas emission regulations and requirements of increased efficiency, spark ignition (SI) engine research is looking at ever more detailed approaches, that cover a large number of processes. Ignition is one of the determining factors for repeatable combustion and its study is associated with extensive difficulties due to the turbulent nature of fluid motion. In order to provide data on the energy transfer and thermal conditions of the flame kernel in its initial stages, vibrational and rotational temperatures were evaluated using UV emission spectra detected in a SI engine. Stoichiometric operation with methane and hydrogen–methane blends was employed, so as to identify any influence of the fuel's molecular structure on these processes. The consolidated methodology for temperature estimation using the ratio between the emission bands of CN and OH, was implemented considering the effects of collisional broadening. Vibrational temperatures evaluation showed and evolution from 8000 K to 4000 K during the arc and glow phase specific for SI. The evolution of CN emission intensity confirmed its formation only in the initial stages of ignition, for which kernel temperature is high enough. Simulations of chemical equilibrium showed that the evaluation of temperatures based on spectroscopic measurements is in line with the decreasing trend correlated with the electrical current evolution, measured in the secondary circuit. 相似文献
12.
Joseph Costandy Nour El Ghazal Mohamed T. Mohamed Akanksha Menon Vidyasagar Shilapuram Nesrin Ozalp 《International Journal of Hydrogen Energy》2012
Global effects of greenhouse gas emissions associated with the current extensive use of fossil fuels are increasingly attracting research groups and industry to find a solution. In order to reduce or avoid such emissions, solar thermal cracking of natural gas has been studied by many research groups as a clean and economically viable option for hydrogen production with zero CO2 emissions. By utilization of concentrated solar energy as the source of high temperature process heat, natural gas is decomposed into hydrogen gas and high grade carbon using a solar reactor. Our previous study shows that temperature distribution inside the solar reactor has significant effect on hydrogen production. In this paper, we expand our previous study by demonstrating that reactor geometry has a notable impact on temperature distribution inside the solar reactor and therefore it has an impact on natural gas to hydrogen conversion. Results show that there are approximately 22% and 32% losses from spherical and cylindrical reactors, respectively, while hydrogen production amount varies from 1.27 g/s to 8.95 g/s for spherical reactor, and 0.94 g/s to 8.94 g/s for cylindrical reactor geometry. 相似文献
13.
14.
Higher refueling rate leads to higher temperature rise within the cylinder. Excessive temperature should be avoided during the refueling progress. In this paper, we studied the effective methods to control the temperature rise by simulations based on the Computational Fluid Dynamics (CFD). Cylinders of different length to diameter ratios and different inlet diameters were simulated. We found that smaller radio of length to diameter can boost for temperature control and temperature distribution. Larger inlet diameter can restrain temperature rise. Comparing the simulation results with constant, increasing and decreasing mass flow rate, the refueling with increasing flow rate obtains the lowest temperature rise. 相似文献
15.
Using wavelet-based multiresolution analysis, this study investigates the effect of hydrogen addition on cyclic variability in a natural gas spark ignition engine. The engine is operated at 3000 rpm, and a lean combustible mixture with excess air ratio of 1.4 is used. Three cases are examined: natural gas with no hydrogen added, and natural gas with the addition of 23% and 40% hydrogen by volume. The time series of the indicated mean effective pressure are analyzed over 192 engine cycles. The method of maximal overlap discrete wavelet transform is used to decompose the time series into five levels with different frequency bands, each level consisting of a “detail” signal and an “approximation” signal. The root mean square amplitude of the detail signal at each level is used as a measure of cyclic variability. The results reveal that with the addition of 23% hydrogen, the root mean square value of the detail signal in each of the five bands is less than that for 100% natural gas. When the amount of hydrogen addition is increased to 40%, the root mean square value in each of the five bands is further reduced. In other words, hydrogen addition has a pronounced effect on reducing the cyclic variability of the indicated mean effective pressure. 相似文献
16.
Koichi Takasawa Ryo IkedaNoboru Ishikawa Ryoji Ishigaki 《International Journal of Hydrogen Energy》2012
The tensile properties of several high-strength low-alloy steels in a 45 MPa hydrogen atmosphere at ambient temperature were examined with respect to the effects of grain size and dislocation density on hydrogen environment embrittlement. Grain size was measured using an optical microscope and dislocation density was determined by X-ray diffractometry. Both grain refinement and a reduction in dislocation density are effective in reducing the susceptibility to embrittlement. The steel that has high dislocation density or large grain size inclines to show a smooth intergranular fracture surface. Given only the grain size and dislocation density, a simple approximation of the embrittlement property of high-strength steel could be obtained. This method could be useful in selecting candidate materials in advance of the mechanical tests in high-pressure hydrogen gas. 相似文献
17.
The effects of different amounts palladium loading on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) have been investigated. The physical properties of the pristine DWCNTs and Pd/DWCNTs were systematically characterized by X-ray diffraction, transmission electron microscopy, and Brunauer–Emmett–Teller surface area measurements. Pd nanoparticles were loaded on DWCNT surfaces for the dissociation of H2 into atomic hydrogen, which spills over to the defect sites on the DWCNTs. When we use different Pd content, the particle size and dispersion will be different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the hydrogen storage capacities were measured at ambient temperature and found to be 1.7, 1.85, 3.0, and 2.0 wt% for pristine DWCNTS, 1.0 wt%Pd/DWCNTs, 2.0 wt%Pd/DWCNTs, and 3.0 wt%Pd/DWCNTs, respectively. We found that the hydrogen storage capacity can be enhanced by loading with Pd nanoparticles and selecting a suitable content. Furthermore, the sorption can be attributed to the chemical reaction between the atomic hydrogen and the dangling bonds of the DWCNTs. 相似文献
18.
Effects of hydrogen on the nanomechanical properties of a bulk metallic glass during nanoindentation
Fuyu Dong Mengyuan He Yue Zhang Liangshun Luo Yanqing Su Binbin Wang Hongjun Huang Qingchun Xiang Xiaoguang Yuan Xiaojiao Zuo Baoshuai Han Yanjin Xu 《International Journal of Hydrogen Energy》2017,42(40):25436-25445
In this reported work, the effects of hydrogen on the nanomechanical properties of a Zr55Cu30Ni5Al10 bulk metallic glass were investigated. The experimental results demonstrated that the nanohardness of the subject material was significantly reduced as the hydrogen content in glass increased, which was caused by the induced softening from the presence of hydrogen as observed by a decrease in the elastic modulus of the glass. The flow serration of the load-displacement on the glass during nanoindentation gradually became smooth when the hydrogen content was high, which was similar to the nanoindentation loading rate effect. The transition in the flow serration was a distinct physical phenomenon, suggesting a change of in the character of plasticity. A single shear band couldn't accommodate the imposed strain rapidly enough, and consequently multiple shear bands must operate simultaneously. The electronic structure of the hydrogenated Zr55Cu30Ni5Al10 were measured by X-Ray photoemission spectroscopy (XPS). In comparison with their quaternary counterparts, the XPS spectra of the hydrogenated samples were characterized by a shift of the Zr and Al band to lower binding energies. These suggested that the presence of solute hydrogen atoms resulted in the occurrence of the valence electron transferring from the Zr 3d band to the ZrH bonding state, which would weaken the surrounding metallic glass. 相似文献
19.
In this work, the catalytic decomposition of the minor hydrocarbons present in natural gas, such as ethane and propane, over a commercial carbon black (BP2000) is studied. The influence of the reaction temperature on the product gas distribution was investigated. Increasing reaction temperatures were found to increase both hydrocarbon conversion and hydrogen selectivity. Carbon produced by ethane and propane was predominantly deposited as long filaments formed by spherical aggregates with diameters on the order of nanometres. Furthermore, the influence of ethane and propane on methane decomposition over BP2000 was also investigated, showing enrichment in hydrogen concentration with the addition of small amounts of these hydrocarbons in the feed. Additionally, the positive catalytic effect of H2S on methane decomposition over BP2000 is addressed. 相似文献
20.
The production of hydrogen and syngas from natural gas using a homogeneous charge compression ignition reforming engine is investigated numerically. The simulation tool used was CHEMKIN 3.7, using the GRI-3 natural gas combustion mechanism. This simulation was conducted on the changes in hydrogen and syngas concentration according to the variations of equivalence ratio, intake temperature, oxygen enrichment, engine speed, initial pressure, and fuel additives with partial oxidation combustion. The simulation results indicate that the hydrogen/syngas yields are strongly dependent on the equivalence ratio with maxima occurring at an optimal equivalence ratio varying with engine speed. The hydrogen/syngas yields increase with increasing intake temperature and oxygen contents in air. The hydrogen/syngas yields also increase with increasing initial pressure, especially at lower temperatures, yet high temperature can suppress the pressure effect. Furthermore, it was found that the hydrogen/syngas yields increase when using fuel additives, especially hydrogen peroxide. Through the parametric screening studies, optimum operating conditions for natural gas partial oxidation reforming are recommended at 3.0 equivalence ratio, 530 K intake temperature, 0.3 oxygen enrichment, 500 rpm engine speed, 1 atm initial pressure, and 7.5% hydrogen peroxide. 相似文献